
AFRL-IF-RS-TR-2001-33
Final Technical Report
March 2001

ARTIFICIAL INTELLIGENCE AND OPERATIONS
RESEARCH: CHALLENGES AND
OPPORTUNITIES IN PLANNING AND
SCHEDULING

Cornell University

Carla P. Gomes

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20010507 075
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-33 has been reviewed and is approved for publication.

APPROVED: (f|j (^ £ ^

CHARLES G. MESSENGER
Project Engineer

FOR THE DIRECTOR:

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0)88

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering end maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave blank/ 2. REPORT DATE

MARCH 2001
3. REPORT TYPE AND DATES COVERED

Final Dec97-Nov00
4. TITLE AND SUBTITLE

ARTIFICIAL INTELLIGENCE AND OPERATIONS RESEARCH: CHALLENGES
AND OPPORTUNITIES IN PLANNING AND SCHEDULING

6. AUTHOR(S)

Carla P. Gomes

5. FUNDING NUMBERS

C - F30602-98-1-0008
PE- 61102F
PR- 2304
TA- Al
WU-P1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Cornell University
Computer Science Department
Ithaca NY 14853

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFTD
525 Brooks Road
Rome NY 13441-4505

10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-33

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Charles G. Messenger/IFTD/(315) 330-3528

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words/

The objective of this effort was to research technology, tools, and techniques to support more efficient techniques for solving
hard computational problems. Both the Artificial Intelligence (AI) community and the Operations Research (OR) community
are interested in developing techniques for solving hard combinatorial problems, in particular in the domain of planning and
scheduling. AI approaches encompass a rich collection of knowledge representation formalisms for dealing with a wide
variety of real-world problems. OR based techniques have demonstrated the ability to identify optimal and locally optimal
solutions for well-defined problem spaces. In general, however, OR solutions are restricted to rigid models with limited
expressive power. AI techniques, on the other hand, provide richer and more flexible representations of real-world
problems, supporting efficient constraint-based reasoning mechanisms as well as mixed initiative frameworks, which allow
the human expertise to be in the loop. The challenge lies in providing representations that are expensive enough to describe
real-world problems and at the same time guaranteeing good and fast solutions.

14. SUBJECT TERMS

Artificial Intelligence (AI), Operations Research (OR), Algorithms
15. NUMBER OF PAGES

72
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents

1. Introduction 1

2. Main Themes in Operations Research 3

3. Opportunities for Integration of AI/OR 6

4. Synopsis of the papers in the Appendix 11

References 12

Appendix 16

Artificial Intelligence and Operations Research:
Challenges and Opportunities in Planning and

Scheduling

Carla P. Gomes
Computer Science Department

Cornell University
Ithaca, NY 14853

gomes@cs. Cornell, edu

1 Introduction
Both the Artificial Intelligence (AI) community and the Operations Research
(OR) community are interested in developing techniques for solving hard com-
binatorial problems, in particular in the domain of planning and scheduling.
AI approaches encompass a rich collection of knowledge representation for-
malisms for dealing with a wide variety of real-wo rid problems. Some examples
are constraint programming representations, logical formalisms, declarative and
functional programming languages such as Prolog and Lisp, Bayesian models,
rule-based formalism, etc. The downside of such rich representations is that
in general they lead to intractable problems, and we therefore often cannot use
such formalisms for handling realistic size problems. OR, on the other hand, has
focused on more tractable representations, such as linear programming formu-
lations. OR based techniques have demonstrated the ability to identify optimal
and locally optimal solutions for well-defined problem spaces. In general, how-
ever, OR solutions are restricted to rigid models with limited expressive power.
AI techniques, on the other hand, provide richer and more flexible represen-
tations of real-world problems, supporting efficient constraint-based reasoning
mechanisms as well as mixed initiative frameworks, which allow the human ex-
pertise to be in the loop. The challenge lies in providing representations that
are expressive enough to describe real-world problems and at the same time
guaranteeing good and fast solutions. Figure 1 provides a high-level view of our
perspective of the integration of AI and OR.

K

Q

Below we present some of the main themes in OR followed by a discussion
on several topics that, in our opinion, represent opportunities for integration of
AI and OR techniques. As an appendix to this report we include a few papers
that elaborate on some of the topics.

2 Main Themes in Operations Research

Optimization and Linear Programming

Traditionally, the Operations Research community has focused on solving
optimization problems. Linear Programming plays a major role in OR methods.
Work done by Leonid Kantorovich in 1939 is considered the main precursor
to Linear Programming (LP). In 1947, George Dantzig developed LP and the
simplex method, initially conceived to speed up the process of providing a time-
staged deployment, training and logistical program for military applications.1

Interestingly, the word "programming" in Linear Programming has nothing to
do with computer programming, but rather with the notion of "program" as
used by the military to refer to plans of military operations. The simplex method
made it possible to consider larger problems in areas as diverse as transportation,
production, resource allocation, and scheduling problems.

The main extensions of LP are Integer Programming (IP) and Mixed In-
teger Programming (MIP) and Stochastic programming. IP and MIP extend
LP to deal with integrality constraints and are the "bread and butter" of OR.
Stochastic programming addresses issues dealing with uncertainty. Common
approaches to solving IP and MIP entail solving several LP's, which are re-
laxations of the original IP or MIP that provide guidance and tighten bounds
for branch and bound techniques. Similarly, Stochastic programming entails
solving several LP's that represent different scenarios in the future — one can
determine the best course of action in the present by optimizing the expected
performance for the different scenarios.

The complexity of LP was not known for a long time. In the 70's, Klee
and Minty created an example that showed that the simplex method can re-
quire exponential time. However, despite its worst-case exponential complexity,
the simplex method generally performs very well in practice. In the late 70's,
Khachian developed a polynomial-time algorithm for linear programming. On
practical problems, however, this method was much less efficient than the sim-
plex method. In 1984, Karmarkar devised an interior point method that is more
efficient and can outperform the simplex method on certain large problems in-
stances. Still, the simplex method is often the method of choice. During the
announcement of the new release of CPLEX at the main OR conference, IN-

1 Ironically, Dantzig was not considered for the Nobel Prize in Economics for work related
to the discovery and application of LP. The prize was given to Koopmans and Kantorovich
for their work applying LP to solve problems in economics.

FORMS, simplex based methods were shown to be very competitive or even
outperforming interior point based methods on several benchmarks.2

Successful solutions of large-scale MIPs require formulations whose LP re-
laxations give a good approximation to feasible solutions. For instance, it is
known that the Knapsack problem is relatively easy to solve if using the "right"
LP formulations whose relaxations are very insightful for a branch and bound
algorithm. However, some formulations of the Knapsack problem lead to poor
relaxations of the corresponding LP, in the sense that they do not provide much
information for a branch and bound algorithm.

The objective function is very important in OR models. In fact, in a recent
review of Mathematical Programming, Dantzig (1991) emphasizes that, apart
from LP and the simplex method, one of his main contributions was the formu-
lation of an explicit goal or objective function to guide the search for feasible
solution, instead of ad hoc ground rules. The objective function is essential in
OR models, for two reasons: On one hand, it provides a criterion for optimiza-
tion and it guides the search for solutions. Furthermore, it is a way of considering
soft constraints. OR experts dealing with real-world applications use the ap-
proach of encoding constraints through the objective function, avoiding the use
of hard constraints as much as possible. A goal constraint is an objective that
is desirable but, if necessary, it can be violated. Goal Programming involves
different techniques to produce solutions involving goal constraints. An exam-
ple is the use of penalties associated with variables that measure the deviation
between the desired goal and the actual value.

The work of Dantzig and Wolfe on solving LP by means of Decomposition
has had a major impact on solving large-scale problems. In fact, even though
the simplex method can handle sparse problems with several thousands of rows
quite comfortably, it does not scale up when it comes to truly huge problems. For
such problems the simplex method is out of the question and the Dantzig-Wolfe
decomposition is needed. An example of the application of such decomposition
methods is column generation techniques. They have been successfully applied,
e.g. in Airline Crew Scheduling (see e.g., Barnhart et al. 1994). Branch-and-
price is an example of a column generation technique.

In a crew scheduling problem sequences of flights (pairings) are assigned to
crews so that each flight for a specific fleet of airplanes is assigned to exactly one
crew. Since pairings are subject to complicated rules (safety and contractual
rules) it would be difficult to express constraints and costs if a direct encoding
were used.3 Instead, valid pairings are enumerated and the problem is formu-
lated as a set partioning problem (SPP). In this formulation each column or
variable corresponds to a pairing and the objective is to partition all of the
flights into a set of minimum cost pairings.

The main drawback is that the number of pairings grows exponentially with
2CPLEX presentation of the new release at Informs, Montreal, 1998.
3 By direct enco

assigned to flight j

3 By direct encoding we mean a formulation with variables Xj3, where Xjj = 1 if crew i is

the number of flights. For example, Vance (1993) found more than 5 million
valid pairings in a daily problem with 253 flights. Problems with 1000 flights, a
typical size for a U.S. domestic carrier, are likely to have billions of pairings.

The approach used to solve this formidable problem uses Dantzig-Wolfe col-
umn generation. The LP relaxation of the SPP is solved, but only a subset of
columns are initially considered. This problem is called the restricted master
problem. New columns are generated only as needed, and if needed, and based
on the information provided by the solution to the restricted master problem,
i.e., the dual prices. These dual prices allow one to determine which flights
should be included in "good" columns for the master problem. The problem of
generating new columns is called the subproblem or pricing problem.

Duality

Duality plays an important role in OR. The theory of duality is elegantly
developed in the context of LP. The basic idea is that every problem can be
considered from a dual perspective — maximizing the profit is equivalent to
minimizing costs. Every maximization LP problem gives rise to a minimization
LP problem, its dual. Interestingly, every feasible solution of one problem pro-
vides a bound on the optimal value of the other problem, and if one of them has
an optimal solution, so does the other and their optimal values are the same.
This is what the famous Duality Theorem states, formally proved by Gale, et
al. (1951). Its notions originated in conversations between Dantzig and von
Neumann in the fall of 1947.

The theory of duality is also used to perform sensitivity analysis and para-
metric analysis, i.e., the study of the impact on the objective function when the
level of resources (the right hand sides of the linear constraints) vary or when
the coefficients of the objective function vary. The technique of penalties uses
sensitivity analysis to tighten bounds during branch-and-bound search.

Structure

Another theme in OR is to exploit inherent problem structure. Trans-
shipment Problems or Network Flow Problems are notable examples of the im-
portance of exploiting structure. The special structure of these problems allows
for very efficient (polynomial) algorithms. An interesting aspect of Network
Flow Problems is that the optimal solution of instances involving only integral
constraints are guaranteed to be also integer-valued. Many combinatorial prob-
lems, well beyond cases that deal with physical shipments of some commodity,
such as scheduling problems, can be efficiently formulated as Network Flow
Problems.

Typically, when using OR methods, one starts by categorizing the problem
into a class of problems for which "good" solution methods have been developed

such as LP, Network Flow, or 0-1 programming problems. At a second level, in
general using an automated process, structure is detected using inference meth-
ods- For example, when solving IP's or MIP's, the derivation of "cutting planes"
is very important to eliminate parts of the search space that are guaranteed not
to contain the optimal solution. Cutting planes are linear inequalities that can
be added to the original formulation of an IP with the guarantee that no inte-
ger solution will be eliminated, but with the advantage of eliminating fractional
solutions generated by the linear relaxation of the problem. The addition of cut-
ting planes leads to tighter relaxations, and therefore their solutions are better
approximations of the IP's solution. Gomory (1963) pioneered this approach,
showing how to systematically generate "cuts" that lead to an integer solution.

Related to the approach of exploiting structure is the strategy of decom-
posing complex problems into simpler problems for which there are good al-
gorithmic approaches or, at least, relaxed versions of the subproblems can be
solved using efficient algorithms. Network Flow Problems play an important
role in decomposition strategies since they represent a large class of problems
after abstracting away some "details".4

Decomposition is often used to get tighter bounds for branch-and-bound
methods. Such an approach is used, for example, by one of the fastest job-
shop scheduling algorithms (Carlier and Pinson 1990). This algorithm bounds
its search with Jackson's preemptive schedule algorithm for a single machine.
Another example is the Knapsack problem. Even though this problem is NP-
complete, it is relatively easy to solve in practice. It is used, in several ap-
proaches, for example to solve the generalized machine assignment problem.

3 Opportunities for Integration of AI/OR

Solving large real-world scheduling problems has so far been almost exclu-
sively the domain of operations research, but recent developments in constraint-
satisfaction techniques have shown that they can be competitive on real-world
problems. The constraint-satisfaction approach brings a novel perspective to
planning and scheduling. Constraint-based methods provide a richer repre-
sentational formalism compared to the traditional OR methods. Furthermore,
constraint satisfaction techniques have developed powerful inference methods
that lead to efficient variable domain reductions.

For example, the constraint programming language ILOG is now being used
in actual fielded applications, in areas such as manpower and service scheduling,
airline scheduling, cutting-stock in the steel industry, manufacturing scheduling

4Unfortunately, Network Flow Algorithms cannot be used when there are global constraints
on the nodes of the network. An example of a global constraint would state that the amount
of goods shipped through certain nodes corresponds to 30 % of the total amount of goods
shipped.

for the auto industry, supply chain management, etc. Companies such as SAP,
Peoplesoft, and 12, leading developers of software solutions for managing human
resources, accounting, materials management, distribution, and manufacturing,
across different industries, combine different optimization techniques such as
constraint programming, mathematical programming, and local search methods.
These new developments have created a unique opportunity to investigate the
integration of AI, primarily constraint-satisfaction methods, and OR techniques.
Some key issues are outlined in the following paragraphs.

Hybrid Solvers

This is an important emerging area of research combining CSP techniques
with OR techniques. Work in this area began with CLP(R), Prolog III, and
Chip, combining constraint satisfaction (CSP) methods with linear program-
ming. The ILOG system integrates a finite domain propagation solver for dis-
crete variables with CPLEX, for continuous variables. Promising results have
been obtained using such hybrid approaches, which allow for more powerful con-
straint reasoning: consistency checking and domain reduction techniques enforce
efficient constraint propagation, while linear programming relaxations provide
infeasibility, or bounds on the objective function. For example, a research team
at Imperial College reports that only by using a hybrid approach were they able
to solve to optimality hoist scheduling problems (Rodosek and Wallace 1998).
These problems could not be solve optimally in the OR literature. McAloon et
al. (1998) also report similar benefits of using hybrid solvers to solve a multi-
commodity integer network flow problem of the Dutch Railways which is greatly
complicated by additional constraints on the coupling and decoupling of trains.

Duality

The notion of duality expresses the fact that there are two complementary
ways of looking at a problem. Duality is a powerful concept that has been
extensively exploited by the OR community in linear programming. Duality
can be exploited to solve problems, by considering simultaneously two perspec-
tives — the primal and dual view of the problem. Such approaches, in general,
allow for stronger inferences, both in terms of cutting planes as well as vari-
able domain reductions. Recently there have been several promising results
in the CSP community using a dual formulation approach (e.g., to solve hard
timetabling problems, McAloon et al. 1997, Gomes et al. 1998). However, in
general, duality is not yet well understood for problems involving constraints
other than inequality constraints. Research in this area, coupled with the study
of the design of global constraints and good relaxation schemes for primal and
dual formulations, is very promising. The study of new ways for performing
sensitivity analysis based on duality is also a promising research area.

Problem Structure

In general structured models are easier to understand and compute with.
The OR community has identified several classes of problems with very a inter-
esting, tractable, structure. LP, and Network Flow problems are good examples
of such problems. OR also exploits the structure of problems during inference by
generating, in generally automatically, "cutting planes", which allow for tighter
relaxations that are therefore closer to the optimal integer solution. The CSP
community, on the other hand, has identified the special structure of several
global constraints that are ubiquitous in several problems, which allow the de-
velopment of efficient constraint propagation techniques for the reduction of the
variable domains.

In general, however, the notion of structure is very hard to define, even
though we recognize structure when we see it. For example, there is not a
methodology that shows how to construct good cutting planes. Formalizing
the notion of structure and understanding its impact in terms of search is a
big challenge for both AI and OR. AI has made some progresses in this area,
namely in the study of phase transition phenomena, correlating structural fea-
tures of problems. For example, in the Satisfiability problem it is known that
the difficulty of problems depends on the ratio between number of clauses and
number of variables (Kirkpatrick and Selman 1994).

In Gomes and Selman (1997) we introduce the Quasigroup Completion prob-
lem (QCP), a structured framework for studying search methods. Our study
of QCP reveals that its complexity depends critically on the percentage of
pre-assigned cells to the initial matrix of the quasigroup. Depending on the
level of pre-assignment, we can identify different levels of difficulty for the in-
stances of the QCP problem, namely an under-contrained area (low levels of
pre-assignment) and an over-constrained area (high levels of pre-assignment)
where problem instances are relatively easy to solve. The critically constrained
area corresponds to intermediate levels of pre-assignment of colors to the initial
quasigroup matrix and those instances tend to be relativley harder to solve.
(See also Appendix 1 for a description of QCP).

Recently, Monasson et al. (1999) also showed that random satisfiability in-
stances that are a mixture of 2-Sat and 3-Sat clauses, the 3-Sat clauses with
weight p, scale linearly as long as p <= 0.4. Another structural feature that
Monasson et al. recently formalized is the concept of backbone. The backbone
of an instance corresponds to the shared structure of all the solutions of a prob-
lem instance. In other words, the set of variables and corresponding assignments
that are common in all the solutions of a problem instance is the backbone.

As a final remark it is important to mention the trade-off between highly
structured models, which tend to be very specific and therefore fit a narrow class
of problems, and more unstructured models that are more flexible and therefore
easier to fit real world problems.

Local Search

Local search methods or meta-heuristics are often used to solve challeng-
ing combinatorial problems. Such methods start with an initial solution, not
necessarily feasible, and improve upon it by performing small "local" changes.
One of the earliest applications of local search was to find good solutions for the
Traveling Salesman Problem (TSP) (Lin (1965) and Lin and Kernighan (1973)).
Lin and Kernighan showed that by performing successive swaps of cities to an
arbitrary initial tour of cities, until no such swaps are possible, one can gener-
ate solutions that are surprisingly close to the shortest possible tour. There are
several ways of implementing local search methods, depending on the choice of
the initial solution, types of "local" changes allowed, and feasibility and cost of
(intermediate) solutions.

There is a great deal of overlap in research on local search by the AI and
OR communities, namely in simulated annealing (Kirkpatrick et al. 1983),
tabu search (Glover 1989), and genetic algorithms (Holland 1975). A recent
new area of application for local search methods is in solving NP-complete
decision problems, such as the Boolean satisfiability (SAT) problem. In 1992,
Selman et al. showed that a greedy local search method, called GSAT, could
solve instances with up to 700 hundred variables. Currently GSAT and variants
(e.g., WALKSAT) are among the best methods for SAT, enabling us to solve
instances with up to 3000 variables (Selman et al. 1994). Closely related work
in the area of scheduling is the technique of "MinConfiicts" proposed by Minton
et al. (1992).

Local search, and mixtures of local and global search strategies have proved
to be very effective to tackle real world problems, in general beyond the reach
of pure complete search methods.

Randomization

Stochastic strategies have been very successful in the area of local search.
However, local search procedures are inherently incomplete methods. An emerg-
ing area of research is the study of Las Vegas algorithms, i.e., randomized
algorithms that always return a model satisfying the constraints of the search
problem or prove that no such model exists (Motwani and Raghavan 1995). The
running time of a Las Vegas style algorithm can vary dramatically on the same
problem instance. The extreme variance or "unpredictability" in the running
time of complete search procedures can often be explained by the phenomenon
of "heavy-tailed cost distributions". The understanding of these characteristics
explains why "rapid restarts" and portfolio strategies are very effective. Restart
and protfolio strategies eliminate the heavy-tailed behavior and exploit any sig-
nificant probability mass early on in the distribution. Restarts and portfolio
strategies therefore reduce the variance in runtime and the probability of failure

of the search procedures, resulting in more robust overall search methods (Frost
et al. 1997; Gomes and Selman 1999; Gomes et al. 1998; Gomes et al. 2000;
and Hoos 1999).

In the first paper of the Appendix, "Heavy-tailed Distributions in Combina-
torial Search", we show that backtrack style algorithms are often characterized
by distributions that can have infinite moments called heavy-tailed distributions.

In the second paper of the Appendix, "Boosting Combinatorial Search Through
Randomization" we discuss how to exploit heavy-tailed behavior to speed up
search by using restart strategies.

In the third paper of the Appendix, "Algorithm Portfolios", we discuss port-
folio strategies, in the context of Mixed Integer Programming.

Cutting planes and constraint propagation

OR's inference method of choice, during search, is "cuts". "Cuts" or "cut-
ting planes" are redundant constraints, in the sense that they do not eliminate
feasible solutions. However, although these constraints are redundant in terms
of the solution, they can play a major role during the search process. A classical
example of the importance of cutting planes involves the pigeonhole problem: by
adding the appropriate redundant constraints to a linear programming formu-
lation, its relaxation immediately returns infeasibility. Without such redundant
constraints, the results of the LP relaxation are useless. Gomory (1963) pi-
oneered the study of cutting planes, showing how to systematically generate
"cuts" that lead to an integer solution. The OR community has developed sev-
eral techniques for the generation of cuts, but, in general, it is not clear how to
construct such cuts.

The CSP's community, on the other hand, mainly relies on domain reduc-
tion techniques for inference during search. A very successful strategy is to
exploit the structure of special constraints and treat them as a global constraint
(Beldiceanu and Contejean 1994, Caseau and Laburthe 1997; Regin 1994 and
1996). Some examples of such propagation methods are the constraint that
guarantees that all elements of a vector are different (all-different constraint)
and the constraint that enforces that certain values occur a given number of
times in a given vector of variables (cardinality constraint). The implementa-
tion of such constraints is an interesting use of Network Flow algorithms (Regin
1994, 1996).

A direction of research is the study of techniques that will lead to the gen-
eration of better cuts as well as efficient domain reduction techniques, and the
combination of cuts with domain reduction techniques. Relevant work in this
area is that of Lovasz and Schrijver (1991) and Balas, Ceria, and Cornuejols
(1993). They have developed the lifi-and-project technique. Hooker (1992) has
developed cutting plane algorithms for IP and resolution methods in proposi-
tional logic. Work on the automated generation of cutting planes for problems

10

such as the pigeonhole problem has been done by Barth (1996). The work done
at Kestrel Institute using a transformational approach to scheduling encom-
passes the generation of very efficient constraint propagation techniques (Smith
and Parra 93). Relevant work on exploiting the structure of global constraints
for domain reduction is that of e.g., Beldiceanu and Contejean 1994, Caseau
and Laburthe 1997, and Regin (1994,1996).

Coupling of Column Generation with CSP

As described above, the column generation formulation involves two phases:
(1) generating columns, and (2) solving the corresponding LP relaxation prob-
lem. In general, the process of generating columns is quite "messy", since com-
plicated constraints are involved. OR methods are not suitable for such a task.
A combination of AI and OR techniques can enhance this phase considerably.
Leconte et al. (1997) have reported very good results for solving a column
generation problem applied to bin-packing configuration problems using hybrid
solvers.

Robustness

Ideally, we would like to find not only good but also robust solutions. The
intuition behind robustness is: given a set C of changes to the initial formulation
of the problem instance, a solution A is more robust than solution B, w.r.t.
set C, if the number of changes required to fix solution A is less than the
number of changes required to fix solution B. There are very few results on
the study of robustness. Most results emphasize generation of solutions from
scratch completely ignoring issues on robustness. This is an area that requires
substantial research, starting with a good definition of the notion of robustness.

4 Synopsis of the papers in the Appendix

In the Appendix we include three papers that elaborate on several issues dis-
cussed above. In this section we give a short synopsis of each paper.

Heavy-tailed Distributions in Combinatorial Search (with Bart Sel-
man and Nuno Crato) In this paper we show that backtrack style algo-
rithms are often characterized by distributions that have infinite moments called
heavy-tailed distributions. We also show how restart strategies are effective for
eliminating heavy-tailed behavior. In fact, the heavy-tailed behavior that char-
acterizes combinatorial search methods can be exploited in terms of algorithm
design, leading to considerable speed ups in runtime. This issue is expanded in
the next two papers of the Appendix.

11

Boosting Combinatorial Search through Randomization (with Henry
Kautz and Bart Selman) In this paper we discuss how restart strategies
are effective to speed up search, taking advantage of heavy-tailed behavior. We

consider applications in planning and scheduling.

Algorithm Portfolios (with Bart Selman) In this paper we discuss port-

folio strategies, in the context of Mixed Integer Programming.

Acknowledgments
I thank Karen Alguire, Roberto Bayardo, Nort Fowler, Al Frantz, Ian Gent,

Neal Glassman, Joseph Halpern, Holger Hoos, Richard Karp, Henry Kautz,
Jean Charles Regin, Gennady Samorodnitsky, Bart Selman, Mark Stickel, and
Toby Walsh for useful suggestions and discussions.

References
Alt, H., Guibas, L., Mehlhorn, K., Karp, R., and Wigderson A. (1996) A method for

obtaining randomized algorithms with small tail probabilities. Algorithmica, 16,
1996, 543-547.

Bamhart, C, Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. (1994)
Branch-and-Price: Column Generation for Solving Huge Integer Programs. Math-
ematical Programming. State of the AH Birge, J., and Murty, K. (eds.), 1994,
186-207.

Balas, E., Ceria, S., and Cornuejols, G. (1993) A lift and project cutting plane algo-
rithm for mixed 0-1 programs. Mathematical Programming 58 (1993), 295-324.

Barth.P. (1996) Logic based 0-1 Constraint programming. Kluwer, 1996.

Beldiceanu N. and Contejean, E. (1994) Introducing global constraints in CHIP. Mathl.
Comput. Modelling, 20 (12), 1994, 97-123.

Carlier,J. and Pinson, E. (1990) A practical use of Jackson's preemptive schedule for
solving the job shop problem. Annals of operations Research, 26, 1990, 269-287.

Caseau, Y. and Laburthe, F. (1997) Solving various weighted matching problems with
constraints. Principles and Practice of Constraint Programming, vol. 1330 of
Lecture Notes in Computer Science, 1997, 17-31.

Caseau, Y., Laburthe, F., Le Pape, C, and Rottembourg B. (2000) Combining local
and global search in a constraint programming environment. Knowledge Engi-
neering Review, Vol. 15 (1), 2000.

Clements D., Crawford J., Joslin D., Nemhauser G., Puttlitz, M, and Savelsbergh,
M. (1997) Heuristic Optimization: a Hybrid AI/OR Approach. Workshop of
Constraint Programming, Austria, 1997.

Dantzig, G.B. (1991) Linear Programming. History of Mathematical Programming,
A collection of Reminiscences Lenstra, J., Kan, R., Schrijver, A. (eds.), CWI,
Amsterdam, 1991, 19-31.

Dantzig, G.B. and Wolfe, P. (1960) Decomposition principle for linear programs. Op-
erations Research, 8, 1960, 101-111.

12

Dixon, H. and Ginsberg, M. (2000) Combining satisfiability techniques from AI and
OR. Knowledge Engineering Review, Vol. 15 (1), 2000.

Frost, D., Rish, I., and Vila, L. (1997) Summarizing CSP hardness with continuous
probability distributions. Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), 1997.

Gomes, C.P., Kautz, H., and Selman, B. (1998) Boosting Combinatorial Search Through
Randomization. Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98), 1998.

Gomes, C.P. and Selman, B. (1997) Problem structure in the presence of perturba-
tions. Proceedings of the Fourteenth National Conference on Artificial Intelli-
gence (AAAI-97), New Providence, RI, 1997, 221-226.

Gomes, C.P. and Selman, B. (1999) Search Strategies for Hybrid Search Spaces. Pro-
ceedings of the Eleventh International Conference on Tools with Artificial Intel-
ligence (ICTAI-99), 1999.

Gomes, C.P., Selman, B., Crato, N, and Kautz, H. (200Ö) Heavy-Tailed Phenomena
in Satisfiability and Constraint Satisfaction Problems. To appear in Journal of
Automated Reasoning 2000.

Gomes, C.P. and Selman, B., McAloon, K., and Tretkoff C. (1998b). Randomiza-
tion in Backtrack Search: Exploiting Heavy-Tailed Profiles for Solving Hard
Scheduling Problems. Proc. AIPS-98.

Gomory, R. (1958) An outline of algorithm for integer solutions to linear programs.
Bulletin of the American mathematical Society, 1958, 64, 275-278.

Gomory, R. (1963) An algorithm for integer solutions to linear programs. Recent
Advances in Mathematical Programming McGraw-Hill, Graves, R. and Wolfe, P.
(eds.) 1963, 64, 260-302.

Hoos, H. (1999) On the Run-time Behaviour of Stochastic Local Search Algorithms for
SAT. Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI-99), 1999, 661-666.

Hooker, J. (1992) Generalized resolution for 0-1 linear inequalities. Annals of Math-
ematics and Artificial Intelligence, 6, 1992, 271-286.

Hooker, J., Ottosson, G., Thorsteinsson, E. and Kim, H. (2000) A scheme for unify-
ing optimization and constraint satisfaction methods. Knowledge Engineering
Review, Vol. 15 (1), 2000.

Jeroslow, R. (1980) A cutting plane game for facial disjunctive programs. SIAM J.
Control and Optimization, 18, 1980, 264-280.

Kautz, H. and Walser, J. (2000) Integer Optimization Models of AI Planning Prob-
lems. Knowledge Engineering Review, Vol. 15 (1), 2000.

Lovasz, L. and Schrijver A. (1991) Cones of matrices and set functions and 0-1 opti-
mizations. SIAM J. Control and Optimization, 1991, 166-190.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L. (1996).
Determining computational complexity from characteristic 'phase transitions'.
Nature, Vol. 400(8), 1999.

Kantorovich, V. (1939) Mathematical Methods in the organization of planning of pro-
duction. Management Science, 6, 1960, 366-422 [English translation.)

Karmarkar, N. (1984) A new polynomial time algorithm for linear programming.
Combinatorica, 4, 1984, 373-395.

13

Khachian, V. (1979) A polynomial time algorithm for linear programming. Math.
Doklady, 20, 1979, 191-194. [English translation.]

Kirkpatrick, S., Gelatt, CD., and Vecchi, M.P. (1983) Optimization by simulated an-
nealing. Science, 220 (1983) 671-680.

Kirkpatrick, S. and Selman, B. (1994) Critical Behavior in the Satisfiability of Ran-
dom Boolean Expressions. Science, 264 (May 1994) 1297-1301.

Klee, V. and Minty, G. (1972) How good is the simplex algorithm? Inequalities-1II
Shisha, O. (ed.) New York: Academic Press, 1972, 159-175.

Lin, S. (1965) Computer solutions of the traveling salesman problem. BSTJ, 44, no
10 (1965), 2245-69.

Lin, S. and Kernighan, B.W. (1973) An effective heuristic for the traveling-salesman
problem. Oper. Res. 21 (1973) 498-516.

Luby, M., Sinclair A., and Zuckerman, D. (1993). Optimal speedup of Las Vegas al-
gorithms. Information Process. Lett, 17, 1993, 173-180.

McAloon, K., Tretkoff C. and Wetzel G. (1997). Sports League Scheduling. Proceed-
ings of Third Hog International Users Meeting, 1997.

McAloon, K., Tretkoff C. and Wetzel G. (1998). Disjunctive programming and and
cooperating solvers. Advances in Computational and Stochastic Optimization,
Logic Programming, and Heuristic Search, 1998. Kluwer, Woodruff, D. (ed.),
75-96.

Minton, S., Johnston, M., Philips, A.B., and Laird, P. (1992) Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems. Ar-
tificial Intelligence, 58 (1992) 161-205,

Nemhauser, G., and Wolsey L. (1988) Integer and Combinatorial Optimization. John
Wiley, New York (1988).

Nemhauser, G., and Trick, M. (1997) Scheduling a major college basketball confer-
ence. Georgia Tech., Technical Report, 1997.

Oddi A. and Smith, S. (1997) Stochastic procedures for generating feasible sched-
ules. Proceedings of the Fourteenth National Conference on Artificial Intelli-
gence (AAAI-97), New Providence, RI, 1997.

Puget, J-F., and Leconte, M. (1995). Beyond the Black Box: Constraints as objects.
Proceedings of ILPS'95, MIT Press, 513-527.

Regin J.C. (1994). A filtering algorithm for constraints of difference in CSPs. Proceed-
ings of the Eleventh National Conference on Artificial Intelligence (AAAI-94),
Seattle, 1994..

Regin J.C. (1996). Generalized arc consistency for global cardinality constraint. Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-
96), Oregon, 1996.

Rodosek, R., and Wallace, Mark (1998). One Model and different solvers for hoist
scheduling problems. Manuscript in preparation.

Smith, D., Frank, J., and Jönsson A. (2000) Bridging the gap Between Planning and
Scheduling. Knowledge Engineering Review, Vol. 15 (1), 2000.

Smith D., and Parra E. (1993). Transformational Approach To Transportation Schedul-
ing. Proceedings of the Eigth Knowledge-Based Software Engineering Confer-
ence, 1993, Chicago,

Vance, P., (1993) Crew Scheduling, Cutting Stock, and Column Generation: Solving
Huge Integer Programs. Georgia Tech., PhD Thesis, 1993.

14

Vossen, T., Ball, M., Lotem, A., and Nau D. (2000) Applying Integer Programming
Techniques to AI Planning. Knowledge Engineering Review, Vol. 15 (1), 2000.

15

Appendix

16

3

Heavy-Tailed Distributions in Combinatorial
Search

Carla P. Gomes1. Bart Selman2, and Nuno Crato3

1 Computer Science Department, Cornell University, Ithaca, NY 14853,
gomes@cs.cornell.edu

2 Computer Science Department, Cornell University, Ithaca, NY 14853,
selman@cs.cornell.edu

Dept. of Mathematics, New Jersey Institute of Technology, Newark, NJ 07102,
USA, ncrato@rn.njit.edu

Abstract. Combinatorial search methods often exhibit a large variabil-
ity in performance. We study the cost profiles of combinatorial search
procedures. Our study reveals some intriguing properties of such cost
profiles. The distributions are often characterized by very long tails or
"heavy tails". We will show that these distributions are best character-
ized by a general class of distributions that have no moments (i.e., an
infinite mean, variance, etc.). Such non-standard distributions have re-
cently been observed in areas as diverse as economics, statistical physics,
and geophysics. They are closely related to fractal phenomena, whose
study was introduced by Mandelbrot. We believe this is the first find-
ing of these distributions in a purely computational setting. We also
show how random restarts can effectively eliminate heavy-tailed behav-
ior, thereby dramatically improving the overall performance of a search
procedure.

1 Introduction

Combinatorial search methods exhibit a remarkable variability in the time re-
quired to solve any particular problem instance. For example, we see significant
differences on runs of different heuristics, runs on different problem instances,
and, for stochastic methods, runs with different random seeds. The inherent ex-
ponential nature of the search process appears to magnify the unpredictability
of search procedures. It is not uncommon to observe a combinatorial method
"hang" on a given instance, whereas a different heuristic, or even just another
stochastic run, solves the instance quickly.

This work was performed while the second author was at AT&T Laboratories,
Florham Park, NJ 07932-0971.

We explore the cost distribution profiles of search methods on a variety of
problem instances. Our study reveals some intriguing properties of such cost
profiles. The distributions are often characterized by very long tails or "heavy
tails". We will show that these distributions are best captured by a general class
of distributions that have no moments, i.e., they have infinite mean, variance,
etc.

Heavy-tailed distributions were first introduced by the Italian-born Swiss
economist Vilfredo Pareto in the context of income distribution. They were ex-
tensively studied mathematically by Paul Levy in the period between the world
wars. Levy worked on a class of random variables with heavy tails of this type,
which he called stable random variables. However, at the time, these distribu-
tions were largely considered probabilistic curiosities or pathological cases mainly
used in counter-examples.This situation changed dramatically with Mandelbrot's
work on fractals. In particular, two seminal papers of Mandelbrot (1960, 1963)
were instrumental in establishing the use of stable distributions for modeling
real-world phenomena.

Recently, heavy-tailed distributions have been used to model phenomena in
areas as diverse as economics, statistical physics, and geophysics. More con-
cretely, they have been applied in stock market analysis, Brownian motion,
wheather forecasts, earthquake prediction, and recently, for modeling time de-
lays on the World Wide Web (e.g., Mandelbrot 1983; Samorodnitsky and Taqqu
1994). We believe our work provides the first demonstration of the suitability of
heavy-tailed distributions in modeling the computational cost of combinatorial
search methods.

300 400 500 600
sequencs of instance

Figure la: Erratic behavior of mean cost value.

Various researchers studying the computational nature of search problems
have informally observed the erratic behavior of the mean and the variance

Figure lb: Mean for a standard distribution (gamma).

of the search cost. This phenomenon has led them to use the median cost to
characterize search difficulty. The heavy-tailed distributions provide a formal
framework explaining the erratic mean and variance behavior. See Figure 1,
for a preview of this phenomenon. Figure la shows the mean cost calculated
over an increasing number of runs, on the same instance, of a backtrack style
search procedure (details below). Contrast this behavior with that of the mean
of a standard probability distribution (a gamma distribution; no heavy tails) as
given in Figure lb. In Figure lb, we see that the sample mean converges rapidly
to a constant value with increasing sample size. On the other hand, the heavy-
tailed distribution in Figure la shows a highly erratic behavior of the mean that
does not stabilize with increasing sample size.1

As a direct practical consequence of the heavy-tailed behavior of cost distri-
butions, we show how randomized restarts of search procedures can dramatically
reduce the variance in the search behavior. In fact, we will demonstrate that a
search strategy with restarts can eliminate heavy-tailed distributions. This may
explain the common informal use of restarts on combinatorial search problems.

2 Structured Search Problems

The study of the complexity and performance of search procedures when applied
to realistic problems is greatly hampered by the difficulty in gathering realistic
data. As an alternative, researchers heavily resort to randomly generated in-
stances or highly structured problems from, e.g., finite algebra. The random
instances clearly lack sufficient structure, whereas the finite algebra problems
are, in some sense, too regular. In order to bridge this gap, we introduced a new

1 The median, not shown here, stabilizes rather quickly at the value 1.

19

benchmark domain, the Quasigroup Completion Problem (Gomes and Selman
1997a).

A quasigroup is an ordered pair (Q, •), where Q is a set and (•) is a binary
operation on Q such that the equations a ■ x = b and y • a = b are uniquely
solvable for every pair of elements a, b in Q. The order N of the quasigroup
is the cardinality of the set Q. The best way to understand the structure of a
quasigroup is to consider the N by N multiplication table as defined by its binary
operation. The constraints on a quasigroup are such that its multiplication table
defines a Latin square. This means that in each row of the table, each element
of the set Q occurs exactly once; similarly, in each column, each element occurs
exactly once (Denes and Keedwell 1974).

An incomplete or partial latin square P is a partially filled N by N table such
that no symbol occurs twice in a row or a column. The Quasigroup Completion
Problem is the problem of determining whether the remaining entries of the
table can be filled in such a way that we obtain a complete latin square, that is,
a full multiplication table of a quasigroup. We view the pre-assigned values of
the latin square as a perturbation to the original problem of finding an arbitrary
latin square. Another way to look at these pre-assigned values is as a set of
additional problem constraints on the basic structure of the quasigroup.

There is a natural formulation of the problem as a Constraint Satisfaction
Problem. We have a variable for each of the N2 entries in the multiplication
table of the quasigroup, and we use constraints to capture the requirement of
having no repeated values in any row or column. All variables have the same
domain, namely the set of elements Q of the quasigroup. Pre-assigned values are
captured by fixing the value of some of the variables.

Colbourn (1983) showed the quasigroup completion problem to be NP-complete.
In previous work, we identified a clear phase transition phenomenon for the
quasigroup completion problem (Gomes and Selman 1997a). See Figures 2 and
3. From the figures, we observe that the costs peak roughly around the same
ratio (approximately 42% pre-assignment) for different values of N. (Each data
point is generated using 1,000 problem instances. The pre-assigned values were
randomly generated.) This phase transition with the corresponding cost profile
allows us to tune the difficulty of our problem class by varying the percentage
of pre-assigned values.

An interesting application area of latin squares is the design of statistical
experiments. The purpose of latin squares is to eliminate the effect of certain
systematic dependency among the data (Denes and Keedwell 1974). Another in-
teresting application is in scheduling and timetabling. For example, latin squares
are useful in determining intricate schedules involving pairwise meetings among
the members of a group (Anderson 1985). The natural perturbation of this prob-
lem is the problem of completing a schedule given a set pre-assigned meetings.

The quasigroup domain has also been extensively used in the area of auto-
mated theorem proving. In this community, the main interest in this domain
has been driven by questions regarding the existence and nonexistence of quasi-

20

groups with additional mathematical properties (Fujita et al. 1993; Lam et al.
1989).

1 1 1 1

/ \ order 11
order 12 Hrr. ■

/ \ order 13
order 14

-0--
-M-- •

lOOO

/ ^

\

order 15

:

100

^' \ \
:

10 r w w ■:

A \ w :

' ..^'■'-':J'''" x\ \ \ *
0.3 0.4 0.5

fraction of pre-aBalgn«d «lwnenta

Figure 2: The Complexity of Quasigroup Completion (Log Scale).

3 Computational Cost Profiles

In this section, we consider the variability in search cost due to different search
heuristics. As our basic search procedure, we use a complete backtrack-style
search method. The performance of such procedures can vary dramatically de-
pending on the way one selects the next variable to branch on (the "variable
selection strategy") and in what order the possible values are assigned to a vari-
able (the "value selection strategy").

One of the most effective strategies is the so-called First-Fail heuristic.2 In the
First-Fail heuristic, the next variable to branch on is the one with the smallest
remaining domain (i.e., in choosing a value for the variable during the backtrack
search, the search procedure has the fewest possible options left to explore —
leading to the smallest branching factor). We consider a popular extension of
the First-Fail heuristic, called the Brelaz heuristics (Brelaz 1979), which was
originally introduced for graph coloring procedures.

The Brelaz heuristic specifies a way for breaking ties in the First-fail rule:
If two variables have equally small remaining domains, the Brelaz heuristic pro-
poses to select the variable that shares constraints with the largest number of
the remaining unassigned variables. A natural variation on this tie-breaking rule

2 This is really a prerequisit for any reasonable backtrack-style search method. In
theorem proving and Boolean satisfiability, the rule is related to the powerful unit-
propagation heuristic.

21

 1 _7

/f
JTS~

—^m *a—
order
order
order
order

12
13
14
IS

Q--
■M--

0 8

0 6 " -

0 4 " fjj -

o 2

1 iO»««Wfff ||'*0 ■—

...X- M-rirfi

is
»

-

0.2 0.3 0.4 O.S 0.6 0.7
fraction of prfl-assignad clanents

Figure 3: Phase Transition for the Completion Problem.

is what we call the "reverse Brelaz" heuristic, in which preference is given to the
variable that shares constraints with the smallest number of unassigned vari-
ables. Any remaining ties after the (reverse) Brelaz rule are resolved randomly.
(Note that such tie breaking introduces a stochastic element in our complete
search method.) One final issue left to specify in our search procedure is the or-
der in which the values are assigned to a variable. In the standard Brelaz, value
assignment is done in lexicographical order (i.e., systematic). In our experiments,
we consider four strategies:

- Brelaz-S — Brelaz with systematic value selection,
- Brelaz-R — Brelaz with random value selection,
- R-Brelaz-S — Reverse Brelaz with systematic value selection, and
- R-berlaz-R — Reverse Brelaz with random value selection.

We encoded this problem in C++ using ILOG SOLVER, a powerful C++
constraint programming library (Puget 1994). ILOG provides a backtracking
mechanism that allows us to keep track of variables and their domains, while
maintaining arc-consistency (van Hentenryck et al. 1992).

Figure 4 shows the performance profile of our four strategies for an instance
of the quasigroup completion problem of order 20 with 10% pre-assigned values,
i.e., in the underconstrained area. Each curve gives the cumulative distribu-
tion obtained for each strategy by solving the problem 10,000 times. The cost
(horizontal axis) is measured in number of backtracks, which is directly propor-
tional to the total runtime of our strategies. For example, the figure shows that
R-Brelaz-R, finished roughly 80% of the 10,000 runs in 15 backtracks or less.

First, we note that the (cumulative) distributions have surprising long tails
after a steep initial climb. We will return to this issue below. We also see that
that R-Brelaz-R dominates the other strategies over almost the full range of
the distribution. (Brelaz-S dominates very early on but the difference is not

22

it X »* »*•*• ******** **
.M--K--M-M--: :

brelazs
bralazr
rbrelazs
rbrelazr

Figure 4: Finding quasigroups of order 20 with 10% pre-assigned values.

statistically significant.) Figure 5 shows the performance profile on an instance of
the quasigroup completion problem in the critically constrained area. The initial
climb followed by a long tail is even more dramatic. In this case, R-Brelaz-R and
R-Brelaz-S give virtually the same performance, and both dominate the other
two strategies.

These profiles suggest that it is difficult to take advantage of combining
different heuristics in order to reduce variability. It was our initial intention to
build so-called algorithm portfolios to reduce variability (Huberman et al. 1997
and Gomes and Selman 1997b). However, with one strategy dominating over the
full profile there is no clear payoff in combining different heuristics, at least in
this domain. In fact, it may well be the case that on a given problem domain,
one can often find a single dominating heuristic. Our study here is not meant to
be exhaustive regarding the full spectrum of search heuristics. In particular, we
restricted ourselves to variations on the well-known Brelaz search heuristic.

In the next section, we concentrate on a perhaps more striking feature of
the cost distributions: the long tails. As we will see in our section on "restarts",
the heavy tail behavior can be exploited effectively to reduce variability in the
search cost.

4 Heavy-Tailed Distributions

Figure 6a shows the heavy-tailed nature of our cost distributions in a more direct
manner. The probability distribution was obtained using R-Brelaz-R on an in-
stance of the quasigroup completion problem of order 20 with 5% preplacement.3

We considered the distributions of over two dozen randomly picked instances
3 Work on exceptionally hard problems provides further support for the heavy tailed

nature of the distributions (Gent and Walsh 1993; Smith and Grant 1995). However,

23

0 . 96 -
^^^^ ^-^^^■"^■^^^™— h«-«1 n.v.s\ _♦—

0.96 • a-. -
^F ^rf^^ rbralazr ■-►<-■•-

0 . 94 m ^r '

0 . 92 -

0. 9 -

0. B8 -

0.86 "

0. 84 -

0 . 82

F ■ > ■ i i

-

1000 1S00
number of backtracks for

2000
first solution

Figure 5: Finding quasigroups of order 10 at the phase transition.

from both the under-constrained and the critically constrained area, as well as
some aggregate distributions. We found heavy-tailed distributions for almost all
of our solvable instances and aggregate distributions. Some very easy solvable
instances did not exhibit heavy tails. Interestingly, the unsolvable instances do
not exhibit heavy-tails. The gamma and normal distributions were the best fit
for the majority of our unsolvable instances (see also Frost et al. (1997)).

In order to model the long tail behavior of our distributions, we will consider
distributions which asymptotically have tails of the Pareto-Levy form, viz.

Pr{X>x}~C.x_0\ x>0 (1)

where a > 0 is a constant. These are distributions whose tails have a hyper-
bolic decay. For the case which concerns us it suffices to consider this tail be-
havior for the positive values of the random variable X. So, in what follows
we will assume that the distribution has support on the positive half line, i.e.,
Pr{0<X <oo} = 1.

Mandelbrot (1983) provides an excellent introduction to these distributions
with a discussion of their inherently self-similar or fractal nature. For a complete
treatment of stable distributions see either Zolotarev (1986), or the more modern
approach of Samorodnitsky and Taqqu (1994). See also de Lima (1997). In what
follows, we simply outline the main results we will need to use.

A random variable X is said to have a stable distribution if for any n > 1
there is a positive number C„ and a real number Dn such that

v
Xx + X2 + ■ ■ ■ + Xn = CnX + Dn (2)

the heavy tails we observed appear more ubiquitous: We observed heavy-tails in the
majority of solvable instances in the under-constrained area and also in the majority
of solvable instances in the critically constrained area. For other recent related work
on cost distributions, see Frost et al. (1997) and Kwan (1995).

24

r>ioonilnftnnriiii,nnt.n..f..rt.ni ■>..,i...^^.ri^r.TrrTirtTtlTnff|))Ml)M|Mt|<1<M|T|]|<(4[|)t)||i
0 1O0O0 20000 30000 40000 50000 6O0OO 70000 80000 90000 lOOOOO

number of backt racks

Figure 6a: Probability distribution exhibiting heavy-tailed behavior.

where Xi, X2,..., Xn are independent copies of X and = stands for equality in
distribution. Prom this definition, it can be shown that the following is implied

Cn .= nl'a
(3)

for some 0 < a < 2 (Samorodnitsky and Taqqu 1994). The constant a is called
the index of stability of the distribution. Stable distributions with a < 2 have
heavy tails of the Pareto-Levy type. The index of stability is the same a which
appears in equation (1).

Since the existence or nonexistence of moments is completely determined
by the tail behavior, it is simple to check that the index of stability a is the
maximal moment exponent of the distribution. For a < 2, moments of X of
order less than a are finite while all higher order moments are infinite, i.e.,
a = sup{a > 0 : E\X\a < oo}. For example, when a = 1.5, the distribution only
has a finite mean but no finite variance. When a = 0.6, the distribution does
not have a finite mean nor a finite variance.

While it is relatively easy to define a stable distribution, only in a few par-
ticular cases the density of the stable distributions is known in its closed form.

It should be noted, however, that distributions with tails of the form (1)
are in the domain of attraction of stable distributions, i.e., properly normalized
sums of variables with tails of the Pareto-Levy type converge in distribution
to an a-stable random variable. This additive character of stable distributions
matches the additive nature of the number of nodes searched in subtrees of the
backtrack tree. This provides some intuition behind the suitability of the stable
distributions for modeling search cost distributions.

In order to check for the existence of heavy tails in our distributions, we
proceed in two steps. First, we graphically analyze the tail behavior of the sample
distributions. Second, we formally estimate the index of stability.

25

s
I

medium-constrained --1—
under-corir»trained n

100 1000
number of backtracks

Figure 6b: Log-log plot of heavy-tailed behavior.

If a Pareto-Levy tail is observed, then the rate of decrease of the estimated
density is hyperbolic — i.e., slower than the exponential rate. The complement
to one of the cumulative distribution also displays a hyperbolic decay

1 - F(x) = Pr {X > x} ~ C.x' (4)

Then, for an heavy-tailed random variable, a log-log plot of the frequency of
observed backtracks after x should show an approximate linear decrease at the
tail. Moreover, the slope of the observed linear decrease provides an estimate of
the index a. In contrast, for a distribution with an exponentially decreasing tail,
the log-log plot should show a faster-than-linear decrease of the tail.

Since the described behavior is a property of the tail we should mainly be
concerned with the last observations, say the 10% observations that display a
higher number of backtracks.

In Figure 6b, we have plotted three empirical cumulative distributions. One
based on the probability distribution from Figure 6a (under-constrained), an-
other for a medium constrained (solvable) instance, and a third for a critically
constrained (solvable) instance. The linear nature of the tails in this log-log plot
directly reveals tails of the Pareto-Levy type.

For contrast we show in Figure 6c the log-log plots of two standard probabil-
ity distributions. We see sharp rounded drop-off of both curves — indicating the
absence of heavy tails. The distributions are given by the cost profiles on two
unsolvable instances of our quasigroup completion problem. One is a rare un-
solvable problem in the underconstrained area (best fit: a gamma distribution),
the other is an unsolvable instance in the critically constrained region (best fit:
normal distribution).

To complement our visual check of Figure 6b, and obtain an estimate of the
index of stability (the value of a), we use the method of Hall (1982), which

26

Figure 6c: Log-log plot of standard distributions (no heavy tails).

performs a regression on the extreme tails. Let Xn\ < Xn2 < • • • < Xnn be
the order statistics, i.e., the ordered values of the sample X\, Xi ■ ■ ■, Xn of the
obtained number of backtracks. Set r < n as a truncation value which allows us
to consider only the extreme observations. We obtain the estimator

ar r-l^logXn -j+l ~ log-Xn.n- (5)

This is a maximum likelihood estimator and Hall (1982) has established its
asymptotic normality. Hall has also determined the optimal choice of the trun-
cation parameter r. However, since this parameter is a function of the unknown
parameters of the distribution, we adhere here to the common practice of using a
set of values in the range {n/10, n/25}. This corresponds to severe truncations,
which allow us to be more confident in our results.

We examined over two dozen distributions, and found values for a that are
consistent with the infinite variance hypothesis (a < 2) and, in many cases,
they point to the nonexistence of the mean (a < 1). The estimates of a for the
distributions in Figure 6b were consistent with the hypothesis of infinite vari-
ance and infinite mean. The standard deviation in the estimates of the a values
were consistently an order of magnitude smaller than the estimates themselves,
pointing to highly significant coefficients.

Are heavy-tailed distributions able to explain the strange sample mean dis-
cussed in the introduction? In other words, are stable distributions with index
of stability of the order of magnitude of those estimated, able to generate data
which reproduces the pattern shown in Figure la?

By using the method of Chambers, Mallows, and Stuck (1976), we generated
random samples from a stable distribution, and calculated the mean as function

27

100 200 300 400 500 600
sequence of instances

Figure 7: Behavior of mean for example stable distribution.

of the number of samples. The resulting sequence of partial means is portrayed
on Figure 7. The comparison between Figures la and 7 is striking, as the general
wild oscillations are very similar and characteristic of heavy-tailed distributions.

5 Exploiting Heavy-Tailed Behavior

effect of restarts (cutoff 4)

OS

0.7

0.6

0.5

0.4

0.3

0.2

0.1

no restarts

with restarts

10O 1 SO 200
total number of backtracks

Figure 8a: Using restarts to exploit heavy-tailed behavior.

For our heavy-tailed distributions, we see that our procedures are in some
sense most effective early on in the search. This suggests that a sequence of short

28

i
§
.i
e

effect of restarts (cutoff 4)
i '

' ' *"U+*4*h*s!!" no restarts :

0.1 - :

0.01 - V with restarts i

0.001 -

 i

-

lO 100
total number of backtracks

Figure 8b: Log-log plot for restarts.

runs instead of a single long run may be a more effective use of our computational
resources. We explore this idea by considering a fixed limit L on our overall cost
("run time"). From the cumulative cost distribution and L, we can determine
what our expected probability of not solving the instance is because the search
procedure runs out of time. We can also compute this "probability of failure"
for a procedure that quickly restarts. Figures 8a and 8b give the results of such
an analysis. (For more detailed results on the derivations of the probability
distributions for restarts, see Gomes and Selman, Rome Lab Technical Report,
1997. For related work, see Gomes and Selman 1997b.)

The analysis was done for the completion problem of an instance of order
20 with 5% pre-placed. See distribution in Figure 6a. From Figure 8a, we see
that without restarts and given a total of 50 backtracks, we have a failure rate
of around 70%. Using restarts (every 4 backtracks), this failure rate drops to
around 10%. With an overall limit of only 150 backtracks, the restart startegy
solves the instance almost always, whereas the original procedure still has a fail-
ure rate of around 70%. Such a dramatic improvement due to restarts is typical
for heavy tailed distributions — in particular, we get similar results on critically
constrained instances. Finally, Figure 8b shows a clear downward curve for the
restart strategy. This suggests that the heavy-tailed nature of the cost distribu-
tion has disappeared. And, thus, we see that random restarts provide an effective
mechanism for dealing with heavy-tailed cost distributions. These results explain
the informal popularity of restart strategies in combinatorial search methods.

6 Conclusions and Future Work

We have revealed the special heavy-tailed nature of the cost distribution of com-
binatorial search procedures. We showed how such distributions can be modeled

29

as stable distributions with heavy Pareto-Levy type tails. Our analysis explains
the empirically observed erratic behavior of the mean and variance of the cost of
combinatorial search. And, more generally, the high variability observed between
runs of such procedures.

Stable distributions have recently been used to capture a variety of real-
world phenomena, such as stock market and wheather patterns. We believe our
results are the first indication of the occurrance of such distributions in purely
computational processes. We hope that our results will further stimulate research
along these lines by employing the special statistical tools available in this area.

We also showed how a "restart" strategy is an effective remedy against the
heavy-tailed phenomena. Restarts drastically reduce the probability of failure
under limited time resources and reduce the overall variability of the method.
Of course, when heavy tails are absent, restarts are much less effective. In our
study, we did not encounter heavy tails for unsolvable instances.

References
Anderson, L. (1985). Completing Partial Latin Squares. Mathematisk Fysiske Med-

delelser, 41, 1985, 23-69.
Brelaz, D. (1979). New methods to color the vertices of a graph. Comm. of the ACM

(1979) 251-256.
Chambers, John M., Mallows, C.L., and Stuck, B.W. (1976) A method for simulating

stable random variables. Journal of the American Statistical Association 71, 340-
344.

Cheeseman, Peter and Kanefsky, Bob and Taylor, William M. (1991). Where the Re-
ally Hard Problems Are. Proceedings IJCAI-91, 1991, 163-169.

Colbourn, C. (1983). Embedding Partial Steiner Triple Systems is NP-Complete. J.
Combin. Theory (A) 35 (1983), 100-105.

Dechter, R. (1991) Constraint networks. Encyclopedia of Artificial Intelligence John
Wiley, New York (1991) 276-285.

de Lima, Pedro J.F. (1997). On the robustness of nonlinearity tests to moment condi-
tion failure. Journal of Econometrics 76, 251-280.

Denes, J. and Keedwell, A. (1974) Latin Squares and their Applications. Akademiai
Kiado, Budapest, and English Universities Press, London, 1974.

Frost, Daniel , Rish, Irina, and Vila, Lluis (1997) Summarizing CSP hardness with
continuous probability distributions. Proc. AAAI-97.

Fujita, M., Slaney, J-, and Bennett, F. (1993). Automatic Generation of Some Results
in Finite Algebra Proc. IJCAI, 1993.

Freuder, E. and Mackworth, A. (Eds.). Constraint-based reasoning. MIT Press, Cam-
bridge, MA, USA, 1994.

Gent, I. P. and Walsh, T.. (1993). Easy Problems are Sometimes Hard, the DIMACS
Challenge on Satisfiability Testing. Piscataway, NJ, Oct. 1993. Full version AIJ
(Hogg et al. 1996).

Gent, I. and Walsh, T. (1996) The Satisfiability Constraint Gap. Artificial Intelligence,
81, 1996.

Gomes, C.P. and Selman, B. (1997a) Problem Structure in the Presence of Perturba-
tions Proc. AAAI-97, Providence, RI, 1997.

Gomes, C.P. and Selman, B. (1997b) Algorithm Portfolio Design: Theory vs. Practice,
Proc. UAI-97, Providence, RI, 1997.

Hall, Peter (1982) On some simple estimates of an exponent of regular variation. Jour-
nal of the Royal Statistical Society, B 44, 37-42.

Huberman, B.A., Lukose, R.M., and Hogg, T. (1997). An economics approach to hard
computational problems. Science, 265, 51-54.

30

Hogg, T., Huberman, B.A., and Williams, C.P. (Eds.) (1996). Phase Transitions and
Complexity. Artificial Intelligence, 81 (Spec. Issue; 1996)

Kirkpatrick, S. and Selman, B. (1994) Critical Behavior in the Satisfiability of Random
Boolean Expressions. Science, 264 (May 1994) 1297-1301.

Kwan, Alvin C. M. (1995) Validity of normality assumption in CSP research, PRI-
CAI'96: Topics in Artificial Intelligence. Proceedings of the 4th Pacific Rim Inter-
national Conference on Artificial Intelligence, 459-465.

Lam, C, Thiel, L., and Swiercz, S. (1989) The Non-existence of Finite Projective Planes
of Order 10. Can. J. Math., Vol. XLI, 6, 1989, 1117-1123.

Mandelbrot, Benoit B. (1960) The Pareto-Levy law and the distribution of income.
International Economic Review 1, 79-106.

Mandelbrot, Benoit B. (1963) The variation of certain speculative prices. Journal of
Business 36, 394-419.

Mandelbrot, B. (1983) 77ie fractal geometry of nature. Freeman: New York. 1983.
Mitchell, D., Selman, B.. and Levesque, H.J. (1989) Hard and easy distributions of

SAT problems. Proc. AAAI-92, San Jose, CA (1992) 459-465.
Puget, J.-F. (1994) A C++ Implementation of CLP. Technical Report 94-01 ILOG

S.A., Gentilly, France, (1994).
Russell, S and Norvig P. (1995) Artificial Intelligence a Modern Approach. Prentice

Hall, Englewood Cliffs, NJ. (1995).
Samorodnitsky, Gennady and Taqqu, Murad S. (1994) Stable Non-Gaussian Random

Processes: Stochastic Models with Infinite Variance, Chapman and Hall, New York.
Selman, B. and Kirkpatrick, S. (1996) Finite-Size Scaling of the Computational Cost

of Systematic Search. Artificial Intelligence, Vol. 81, 1996, 273-295.
Smith, B. and Dyer, M. Locating the Phase Transition in Binary Constraint Satisfac-

tion Problems. Artificial Intelligence, 81, 1996.
Smith, B. and Grant S.A., Sparse Constraint Graphs and Exceptionally Hard Prob-

lems. IJCAI-95, 646-651, 1995. Full version in AIJ (Hogg et al. 1996).
van Hentenryck, P. , Deville, Y., and Teng Choh-Man (1992) A generic arc consistency

algorithm and its specializations. Artificial Intelligence, 57, 1992.
Williams, C.P. and Hogg, T. (1992) Using deep structure to locate hard problems.

Proc. AAAI-92, San Jose, CA, July 1992, 472-277.
Zhang, W. and Korf, R. A Study of Complexity Transitions on the Asymmetric Trav-

elling Salesman Problem. Artificial Intelligence, 81, 1996.
Zolotarev, V.M. (1986) One-dimensional Stable Distributions. Vol. 65 of "Translations

of mathematical monographs", American Mathematical Society. Translation from
the original 1983 Russian Ed.

31

Boosting Combinatorial Search Through Randomization

Carla P. Gomes
Computer Science Department

Cornell University
Ithaca, NY 14853

gomes@cs.cornell.edu

Bart Selman
Computer Science Department

Cornell University
Ithaca, NY 14853

selman@cs.cornell.edu •

Henry Kautz
AT&T Labs

180 Park Avenue
Florham Park, NJ 07932
kautz@research.att.com

Abstract

Unpredictability in the running time of complete search
procedures can often be explained by the phenomenon of
"heavy-tailed cost distributions", meaning that at any time
during the experiment there is a non-negligible probability
of hitting a problem that requires exponentially more time to
solve than any that has been encountered before (Gomes et
al. 1998a). We present a general method for introducing con-
trolled randomization into complete search algorithms. The
"boosted" search methods provably eliminate heavy-tails to
the right of the median. Furthermore, they can take advan-
tage of heavy-tails to the left of the median (that is, a non-
negligible chance of very short runs) to dramatically shorten
the solution time. We demonstrate speedups of several or-
ders of magnitude for state-of-the-art complete search pro-
cedures running on hard, real-world problems.

Introduction

The time required by complete search methods to solve
similar combinatorial problems can be surprisingly vari-
able. Two problem instances may be identical, except for
the order in which the variables are numbered. A particular
complete search algorithm may solve the first in seconds,
yet require hours or days to solve the second. Even for
a single problem instance, a seemingly trivial change in a
detail of the search algorithm may drastically alter the solu-
tion time. In addition, in many domains there are problem
instances that can be quickly solved by incomplete meth-
ods, but apparently cannot be solved by complete methods,
even methods guided by powerful heuristics.

This unpredictability in the running time of a complete
algorithm undermines one of the main reasons that one may
choose to employ such a method, namely the desire for a
guarantee that the algorithm will determine whether or not
each problem instance in fact has a solution. It is desirable,
therefore, to find ways to improve the robustness and pre-
dictability of these algorithms.

This paper discusses a general technique for improv-
ing complete search methods by introducing a controlled
amount of randomization. The technique actually takes ad-
vantage of the variability of the underlying search method

in order to find solutions more quickly and with less vari-
ance in solution time. We demonstrate the effectiveness
of this strategy on SAT and CSP algorithms, in the do-
mains of logistics planning, circuit synthesis, and round-
robin scheduling. Solutions times are reduced by an order
of magnitude or more, and some instances are solved for
the first time by a method other than local search.

We will show that the unpredictability in running times
for combinatorial algorithms can often be explained by
a phenomenon called a "heavy-tailed cost distribution"
(Gomes et al. 1998a). In our preliminary experiments, we
plotted the solution times for a deterministic search algo-
rithm running on a random distribution of scheduling prob-
lem instances. We noticed that at any time during the ex-
periment there was a non-negligible probability of hitting
a problem that required exponentially more time to solve
than any that had been encountered before. This so-called
"heavy-tail" phenomena causes the mean solution time to
increase with the length of the experiment, and to be infi-
nite in the limit.

Previous authors have noted the occurrence of seemingly
exceptionally hard problems in fixed problem distributions
(Gent and Walsh 1994; Smith and Grant 1996). However,
we further discovered that when a small amount of ran-
domization was introduced into the heuristic used by the
search algorithm, then, on some runs, the instances were
solved quickly. Thus, the "hardness" did not reside in the
instances, but rather in the combination of the instance with
the details of the deterministic algorithm. When we plotted
the solution times for many runs of the randomized com-
plete algorithm (with different random seeds) on a single
problem instance, we discovered the same heavy-tailed dis-
tribution as we had seen before on a collection of instances.

This observation led us to realize that a deterministic
search algorithm can be viewed as a single run of a ran-
domized algorithm. The unpredictability of deterministic,
complete algorithms is thus explained by the variance one
would expect in any one run of a randomized algorithm.
Furthermore, by analyzing the shape of the cost distribu-
tion we developed simple techniques that provably reduce

32

Problem Solver Deterministic Randomized
soln. time mean soln. time

logistics.d Satz 108 min 95 sec
3bit-adder-32 Satz > 24 hrs 165 sec
3bit-adder-31 Satz > 24 hrs 17 min

round-robin 14 ILOG 411 sec 250 sec
round-robin 16 ILOG > 24 hrs 1.4 hrs
round-robin 18 ILOG > 48 hrs « 22 hrs
block-world.d Satz 30 min 23 min

Table 1: Comparison of speed of original deterministic algorithms and randomized versions on test-bed problems.

the mean solution time.
For our experiments, we used known hard problem in-

stances from scheduling, planning, and circuit synthesis,
and a state of-the-art satisfiability engine (Satz, by Li
and Anbulagan (1997)), and a highly efficient CSP solver
built using the ILOG C++ constraint programming library
(Puget and Leconte 1995). It is important to note that in
both cases the underlying deterministic complete search en-
gines are among the fastest (and on many problems, the
fastest) in their class. Thus, the techniques discussed in
this paper extend the range of complete methods to prob-
lems that were previously beyond their reach. For a pre-
view of our main results, see Table 1. The table shows
how our randomization strategy enabled us to solve sev-
eral previously unsolved problem instances, and other in-
stances were solved up to an order of magnitude faster.
Given the techniques' simplicity and generality, our ap-
proach can be easily adapted to improve the performance
of other backtrack-style search methods used in planning,
scheduling, and other tasks of interest to AI.

Problem Domains

Our problem domains are timetable scheduling, planning,
and circuit synthesis. The first is formalized as a CSP prob-
lem, and the latter two as propositional satisfiability.

Timetabling consists in determining whether there ex-
ists a feasible schedule that takes into consideration a set
of pairing and distribution constraints. More specifically,
we consider problems derived from sports scheduling ap-
plications. The literature in this area is growing, and one
can begin to get a sense of the range and mathematical dif-
ficulty of the problems encountered (McAloon et al. 1997;
Nemhauser and Trick 1997; and Schreuder 1992). Here
we consider the timetabling problem for the classic "round-
robin" schedule: every team must play every other team
exactly once. The problem is formally defined as follows:
1. There are TV teams (N even) and every two teams play
each other exactly once.
2. The season lasts N - 1 weeks.

3. Every team plays one game in each week of the season.
4. There are AT/2 periods and, each week, every period is
scheduled for one game.
5. No team plays more than twice in the same period over
the course of the season.

Up to 8-team problems are relatively simple and can be
done by brute force. However, the combinatorics of this
scheduling problem are explosive. For an N team league,
there are N/2 • (N -1) matchups (i,j) with 0 < i < j < N
to be played. A schedule can be thought of as a permutation
of these matchups. So, for N teams the search space size
is (N/2 ■ (N - 1))!, i.e., the search space size grows as the
factorial of the square of N/2. Published algorithms for this
problem all scale poorly, and the times for our deterministic
solver (as shown in Table 1) are among the best (see also
Gomes et al. 1998b).

The second domain is planning. Kautz and Selman
(1996) showed that propositional SAT encodings of diffi-
cult STRIPS-style planning problems could be efficiently
solved by SAT engines. While both a complete backtrack-
style engine and an incomplete local-search engine worked
well on moderate-sized problems, the largest problems
from the domain of logistics scheduling could only be
solved by local search. However, it turns out that the de-
terministic version of Satz can solve all of the logistics in-
stances from that paper in less than 2 minutes. Therefore we
constructed a still-larger planning problem, labeled "logis-
tics.d". This domain involves moving packages on trucks
and airplanes between different locations in different cities.
While the largest logistics problem from the Kautz and Sel-
man (1996) paper involved 1,141 variables, "logistics.d" in-
volves 2,160 variables.

The final domain is circuit synthesis. Kamath et al.
(1993) developed a technique for expressing the problem of
synthesizing a programmable logic array (PLA) as a propo-
sitional satisfiable problem. The statement of the problem
includes a table specifying the function to be computed, and
an upper-bound on the number of gates that may appear in
the circuit. In general, these problems become more dif-
ficult to solve as the number of gates is reduced, until the

33

limit is reached where the instance is unsatisfiable. These
problems are quite hard to solve with complete SAT proce-
dures, and have been used as part of the test-beds for numer-
ous SAT competitions and research studies. The problems
considered in this paper, "3bit-adder-32" and "3bit-adder-
31" are (as one would guess) based on synthesizing a 3-bit
adder using 32 and 31 gates respectively. Although Selman
and Kautz (1993) solve the instances using local search,
no one has previously solved either using a backtrack-style
procedure.

Randomizing Complete Search Engines

We now consider general techniques for adding randomiza-
tion to complete, systematic, backtrack-style search proce-
dures. Such a procedure constructs a solution incremen-
tally. At each step a heuristic is used to select an operation
to be applied to a partial solution, such as assigning a value
to an unassigned variable. Eventually either a complete so-
lution is found, or the algorithm determines that the current
partial solution is inconsistent. In the latter case, the algo-
rithm backtracks to an earlier point in its search tree.

If several choices are heuristically determined to be
equally good, then a deterministic algorithm applies some
fixed rule to pick one of the operations; for example, to
select the lowest-numbered variable to assign. The most
obvious place to apply randomization, therefore, is in this
step of tie-breaking: if several choices are ranked equally,
choose among them at random. Even this simple modi-
fication can dramatically change the behavior of a search
algorithm, as we will see in the section on CSP below.

However, if the heuristic function is particular power-
ful, it may rarely assign more than one choice the highest
score. To handle this, we can introduce a "heuristic equiva-
lence" parameter to the algorithm. Setting the parameter to
a value H greater than zero means all choices who receive
scores within H-percent of the highest score are considered
equally good. This expands the choice-set for random tie-
breaking.

With these changes each run of the search algorithm on a
particular instance will differ in the order in which choices
are made and potentially in time to solution. As we will
discuss in detail below, it can be advantageous to terminate
searches which appear to be "stuck", exploring a part of the
space far from a solution. Therefore we will also introduce
a "cutoff" parameter, that limits search to a specified num-
ber of backtracks. When the cutoff is reached, the algorithm
is restarted at the root of the search tree.

We should note that introducing randomness in the
branching variable selection does not effect the complete-
ness of the backtrack-style search. Some basic book-
keeping (only linear space) ensures that the procedures do
not revisit any previously explored part of the search space,
which means that we can still determine inconsistencies,

unlike local search methods. The cutoff parameter does
limit the size of the space that can be searched exhaustively
between restarts. In practice, we gradually increase the cut-
off, to allow us to determine inconsistencies, if necessary.

A variable-order randomization and restart strategy was
employed in Crawford and Baker's (1994) "probing" algo-
rithm for SAT. Despite the fact that it performed no back-
tracking at all, it was shown to solve a number of examples.
Even though, the "power of randomization" in combinato-
rial search has been informally recognized by others (for
recent work in scheduling domains, see e.g., Bresina 1996
and Oddi and Smith 1997), our work provides the first ex-
planation for the potential success of this kind of strategy,
in terms of heavy-tailed distributions (Gomes etal. 1998a).
As we will see, our data also shows that there is often a clear
optimal cutoff value; simply probing down with unit propa-
gation but no backtracking can be ineffective. For example,
in Table 3 we have a 0% success rate for a cutoff value of
2. More recently, Bayardo and Schräg (1997) introduced
a backtrack-style solver, rel-sat, that included randomized
tie-breaking and restarts, but with only a fixed, high cut-
off value. The focus of that work was on the backtracking
technique, rather than the effect of restarts.

The first complete search algorithm we randomized was
a CSP solver. ILOG SOLVER is a powerful C++ con-
straint programming library (Puget and Leconte 1995). For
the round-robin scheduling problems discussed below, we
used the library to build a deterministic, backtrack-style
CSP engine. (See Dechter (1991) and Freuder and Mack-
worth (1994) for an overview of basic CSP algorithms.)
It employs the first-fail heuristic for variable assignment,
which selects the variables with the smallest domain first;
ties are broken lexicographically. The performance of this
deterministic version already matches or exceeds all the
published results on solving these types of problems. We
then randomized the solver by breaking ties randomly, and
adding a cutoff parameter (Gomes et al. 1998b).

The second algorithm we randomized was for prepo-
sitional satisfiability. One of the fastest complete search
engines for prepositional satisfiability testing is the Satz
system of Li and Anbulagan (1997). Satz is a version of
the Davis-Putnam-Loveland procedure (Davis et al. 1962),
with a heuristic based on choosing a branch variable that
maximizes a function of the number of the unit propa-
gations performed when it is set positively or negatively.
Satz is the fastest deterministic SAT procedure we have
found for the instances discussed in this paper. It can of-
ten solve smaller instances of these types with less than 100
backtracks. Because its heuristic usually chooses a single
branching variable without ties, we added a heuristic equiv-
alence parameter to enlarge the choice-set.

34

Heavy-Tailed Cost Distributions

In previous work (Gomes et al. 1998a), we show that the tail
behavior of randomized complete backtrack style methods
is often best modeled using distributions which asymptoti-
cally have tails of the Pareto-Levy form, viz.

Pr{X>x}~ai_Q, x>0 (1)

where a > 0 is a constant (Mandelbrot 1960; and Samorod-
nitsky 1994). These are heavy-tailed distributions, i.e.,
distributions whose tails have a power law decay. The
constant a is called the index of stability of the distribu-
tion. For a < 2, moments of X of order less than a
are finite while all higher order moments are infinite, i.e.,
a = sup{a > 0 : E\X\a < oo}. For example, when
a = 1.5, the distribution has a finite mean but no finite
variance. With a = 0.6, the distribution has neither a finite
mean nor a finite variance.

If a Pareto-Levy tail is observed, then the rate of de-
crease of the distribution is a power law. (Standard dis-
tributions exhibit exponential decay.) From (1), we have
1 - F(x) = Pr {X > x} ~ C.x~a, so the complement-
to-one of the cumulative distribution, F(pc), also decays
according to a power law. Given the power law decay of
the complement-to-one of the cumulative distribution of a
heavy-tailed random variable, its log-log plot should show
an approximately linear decrease in the tail. Moreover, the
slope of the observed linear decrease provides an estimate
of the index a.

Btdtads (09)

Figure 1: Log-log plot of the tail of 12 team round-robin
scheduling.

Figure 1 shows the log-log plot of the tail (X > 10,000)
of the complement-to-one of the cumulative distribution, 1-
F(x), for our 12 team round-robin problem. The linear na-
ture of the tail in this plot directly reveals heavy-tails of the
Pareto-Levy type.

To complement our visual check of heavy-tailed behavior
of Figure 1, we calculate the maximum likelihood estimate
of the index of stability (the value of a): For our round-
robin scheduling problem, for N = 12, we obtain a = 0.7,
which is consistent with the hypothesis of infinite mean and
infinite variance, since a < l.1

So far, we have identified heavy-tailed behavior of the
cost distribution to the right of the median. The heavy
tail nature shows that there is a computationally significant
fraction of very long runs, decaying only at a polynomial
rate. The strategy of running the search procedure with
a cutoff near the median value of the distribution clearly
avoids these long runs in the tail.

However, our experiments in Gomes (1998a) also sug-
gest a heavy tail phenomenon on the left-hand side of the
median value of the cost distribution, which means that the
success rate for a solution only increases polynomially with
the number of backtracks. This explains how a relatively
low cutoff value still gives a sufficiently high success rate
to allow us to solve a problem instance. For example, for
our round-robin scheduling problems with N = 16, we ob-
served several runs that took less than 200 backtracks, com-
pared to a median value of around 2,000,000. For N = 18,
we ran with a cutoff of 500,000 and solved the instance af-
ter 20 tries. Each try took about 1 hour, and the successful
run took 350,632 backtracks.

Tails on the left are also characterized by an index of
stability. Based on our data (Gomes 1998a), we conjec-
ture that a for the tail on the left is less than 1.0 on hard
combinatorial search problems. This conjecture has strong
implications in terms of algorithm design: It means that in
order to obtain the minimal expected run time, a preferred
strategy consists of relatively short runs of a randomized
backtrack-style procedure.

We do not wish to give the impression that every search
problem gives rise to a heavy-tailed distribution. In fact,
doing so would give rise to the suspicion that the distribu-
tions we found were an artifact of our methodology, rather
than a real phenomena of the problem domain! One do-
main in which we have not found heavy-tails is on blocks-
world planning problems. The hardest blocks-world prob-
lem from Kautz and Selman (1996) is blocks-world.d, and it
can be solved by deterministic Satz in 30 minutes. We ran
the randomized version of Satz on this instance at a wide
range of cutoff values and heuristic equivalence settings.
The optimal equivalence parameter setting was 30%. How-
ever, over a range of cutoff values, there was no evidence
of a heavy-tailed distribution, and, therefore, randomization

1 Of course, the computational cost of complete backtrack-style
algorithms has a finite upper-bound. However, since we are deal-
ing with NP-complete problems, this upper-bound is exponential
in the size of the problem, which means that de facto, for realistic-
size hard instances, it can be treated as infinite for practical pur-
poses: no practical procedure can explore the search full space.

35

only slightly increases the effectiveness of Satz: the mean
cost is 23 minutes. Further studies are needed to determine
exactly what characteristics of combinatorial search prob-
lems lead to heavy-tailed behavior.

Boosting Performance by Randomization and
Restarts

So far, we have discussed how heavy-tailed probability dis-
tributions underlie the large variability observed when run-
ning a randomized backtrack-style procedure on a variety of
problem instances. We can obtain more efficient and more
predictable procedures by running the search up to a cer-
tain cutoff point and then restarting at the root of the tree.
Restarts clearly prevent the procedure from getting trapped
in the long tails on the right of the distribution. In addi-
tion, a very low cutoff value can also be used to exploit the
heavy-tails to the left of the median, and will allow us to
solve previously unsolved problem instances after a suffi-
cient number of restarts. In Table 1, the mean solution times
in the "Randomized" column are based on empirically de-
termined near-optimal cutoff values. For each randomized
solution time the standard deviation is of the same order
of magnitude as the mean. This is to be expected because
the distribution is geometric, as will be shown in the next
section. Without restarts, of course, the variance and mean
tend to infinity to a first approximation.

We will now discuss these results in more detail.
Our deterministic CSP procedure on the round-robin

scheduling problem gives us us a solution for N = 14 in
about 411 seconds. (Experiments ran on a 200MHz SGI
Challenge.) We could not find a solution for N = 16 and
N — 18. Apparently, the problem quickly becomes very
difficult, even for moderate values of N. The subtle interac-
tion between global and local constraints makes the search
for a globally consistent solution surprisingly hard.

For problems for which we can empirically determine the
overall cost profile, we can calculate an optimal cutoff value
to minimize the expected cost of finding a solution. Our
main interest, however, is in solving previously unsolved
instances, such as the N = 16 and N = 18 case. These
problems are too hard to obtain a full cost distribution. For
example, for N = 16, running with a cutoff of 1,000,000
gives a success rate of less than 40%, so we do not even
reach the median point of the distribution. Each run takes
about 2 hours to complete. (We estimate that the median
value is around 2,000,000. Our deterministic procedure ap-
parently results in a run that still lies to the right of the ex-
pected median cost.) In order to find a good cutoff value for
very hard problem instances, the best available strategy is
a trial-and-error process, where one experiments with vari-
ous cutoff values, starting at relatively low values, since the
optimal cutoff for these problems tends to lie below the me-
dian value of the distribution. This can be seen from Table

cutoff succ. mean cost
rate (xlO5)

200 0.0001 2.2
5,000 0.003 1.5
10,000 0.009 1.1
50,000 0.07 0.7
100,000 0.06 1.6
250,000 0.21 1.2

1,000,000 0.39 2.5

Table 2: Solving the 16-team robin-robin scheduling prob-
lem for a range of cutoff values.

cutoff succ.
rate

mean cost

2 0.0 >300,000
4 0.00003 147,816
8 0.0016 5,509
16 0.009 1,861
32 0.014 2,405

250 0.018 13,456
16000 0.14 107,611

128000 0.32 307,550

Table 3: Solving the logistics.d problem for a range of cut-
off values.

2, which gives the expected cost (backtracks) for finding a
solution for N = 16 for a range of cutoff values. The opti-
mal cutoff is around 5.104, resulting in an expected cost per
solution of 7.105 backtracks (=s 1.4 hrs). For the N = 18
case, we ran with a cutoff of 5.105, and found a solution
after approximately 22 hours.2

Table 3 gives the performance of Satz for a range of cut-
off values on the logistics.d instance. Again, there is a clear
optimal value: In this case, it's surprisingly low, 16 back-
tracks. Despite the low success rate (less than 1%) at this
cutoff value, the overall performance is close to optimal
here, requiring around 1,800 backtracks total per solution,
which takes around 95 seconds. Compare this with the 108
minutes for the deterministic version of Satz. It's important
to note that the 108 minutes run is not just an "unlucky"
determinist run. Given the shape of the underlying heavy-
tailed distribution, most runs take more than 100,000 back-
tracks (over 1 hour). The trick is to exploit the fact that we
have a non-negligible probably of solving the instance in a
very short run. Our fast restart strategy exploits this.

See Table 1 for other improvements due to randomiza-

Since the submission of this paper, a lot of progress has been
made in terms of solving larger instances (McAloon et al. in
preparation). By using multiple threads on a 14 processor Sun
system, 26 and 28 teams schedules were generated, which is the
record as of this writing (Wetzel and Zabatta, 1998). We be-
lieve these numbers can be improved upon with our randomization
technique.

36

tion. Until now, the 3bit-adder problems had not been
solved by any backtrack-style procedure. On the block-
world problem, we obtain little improvement, which can be
attributed to the absence of heavy-tails as discussed above.

These results show that introducing a stochastic element
into a backtrack-style search procedure, combined with an
appropriate restart strategy, can significantly enhance the
procedure's performance. In fact, as we see here, it allows
us to solve previously unsolved problem instances.

A Formal Analysis of Restarts

In this section we formalize the strategy of restarts 5 of a
complete stochastic procedure A. We derive the probability
distribution of S assuming the full knowledge of the proba-
bility distribution of A. We demonstrate that the probability
distribution associated with S does not exhibit heavy tails.
Furthermore, S has a finite mean and variance, even if the
stochastic procedure A has an infinite mean and variance.

Let us consider a complete stochastic procedure and as-
sociate with it the random variable A, where A is the num-
ber of backtracks that it takes to find a solution or prove
that it does not exist. Let us now consider the following
stochastic strategy for running A: run A for a fixed number
of backtracks c (the cutoff); if A finds a solution or proves it
does not exist, then our stochastic strategy has also found a
solution (or proved that it does not exist) and it stops. Oth-
erwise, restart A from the beginning, using an independent
random seed, for another c backtracks, and so on. Define S
as the number of backtracks that the stochastic strategy of
restarts of A with cutoff c takes to find a solution or prove
that it does not exist. Let's assume that we know P[A< c],
i.e., the probability that the stochastic procedure A will find
a solution or prove that it does not exist in no more than
c backtracks. The sequence of runs of A executed by our
restart strategy are independent, and therefore they can be
seen as a sequence of Bernoulli trials, in which the success
consists in finding a solution (or proving that it doesn't ex-
ist) before the end of the run.

It's convenient to also define a random variable R, giving
the number of restarts until a solution is found (or the in-
stance is shown inconsistent). Note that R = \S/c]. R fol-
lows a geometric distribution with parameter p = P[A <
c}. The probability of the tail of S, P[S > s], is given by

P[S > s] = (1 - p)Ls/cJ P[A > s mod c)

Taking into consideration that R — \S/c] and that it
follows a geometric distribution (exponential decay; finite
mean and variance), it follows that the tail of the distribu-
tion of S also exhibits exponential decay and S has a finite
mean and variance.

We should emphasize that when adopting a low cutoff
the strategy of restarts partially eliminates the heavy tail on

the left: the lower the cutoff, the shorter the tail. This is
true since the distribution of S exhibits exponential decay
for S >cutoff.

Conclusions

Building on our previous work on heavy-tailed behavior in
combinatorial search (Gomes et al. 1998a), we have shown
that performance of complete, backtrack-style search al-
gorithms on hard real-world problems can be greatly en-
hanced by the addition of randomization combined with a
rapid restart strategy. Speedups of several orders of magni-
tude were observed, and some test problem instances were
solved for the first time by any backtrack-style procedure.

The success of our approach is based on exploiting the
heavy-tailed nature of the cost distributions. We saw that
in most of the domains we found that "outliers" on both
sides of the median occur with a relatively high frequency.
Heavy-tails to the right of the median cause the mean so-
lution time to grow without bounds. Adding cutoffs and
restarts to the search algorithm, however, both theoreti-
cally and empirically eliminate the heavy-tail and bound the
mean. Heavy-tails to the left of the mean can be exploited
by performing many rapid restarts with short runs, leading
to a further dramatic decrease in expected solution time.

We applied the randomization techniques to two state-
of-the-art search engines for CSP and propositional satisfi-
ability. We were able to solve hard round-robin scheduling
instances of up to size 18, when the corresponding deter-
ministic version could only handle instances up to size 14.
In the domain of planning as satisfiability, we extended the
range of logistics problems that could be solved by com-
plete methods from problems containing 1,141 variables to
ones involving 2,160 variables (solved with mean cost of
95 seconds).

It would be interesting to explore our randomization ap-
proach in context of other backtrack-style approaches, such
as dynamic backtracking (Ginsberg 1993). We believe that
the generality of the approach will lead to further advances
in planning, scheduling, diagnosis, game-playing, and other
areas of AI.

References

Alt, H., Guibas, L., Mehlhorn, K., Karp, R., and Wigderson A.
(1996). A method for obtaining randomized algorithms with
small tail probabilities. Algorithmica, 16, 1996, 543-547.

Bayardo, Roberto J., and Schräg, Robert C. (1997). Using CSP
look-back techniques to solve real-world SAT instances. Proc.
AAAl-97, New Providence, RI, 1997,203-208.

Bresina, J. (1996) Heuristic-biased stochastic sampling. Proc.
AAAI-96, Portland, OR, 1996.

Crawford, J. M., and Baker, A. B. (1994). Experimental results
on the application of satisfiability algorithms to scheduling
problems. Proc. AAAI-94, Seattle, WA, 1092-1097.

37

Davis, M., Logemann, G., and Loveland, D. (1962). A machine
program for theorem proving. Comm. ACM, 5, 1962, 394-397.

Dechter, R. (1991). Constraint networks. Encyclopedia of Artifi-
cial Intelligence John Wiley, New York (1991) 276-285.

Freuder, E. and Mackworth, A., eds. (1994). Constraint-based
reasoning. MIT Press, Cambridge, MA.

Gent, Ian P. and Walsh, Toby (1994). Easy problems are some-
times hard. Artificial Intelligence, (70)1-2, 335-345.

Ginsberg, M. (1993). Dynamic Backtracking. Journal of Artifi-
cial Intelligence, Vol. 1, 25-46.

Gomes, C.P. and Selman, B. (1997). Problem structure in the
presence of perturbations. Proc. AAAI-97, New Providence,
RI, 221-226.

Gomes, C.P., Selman, B.,and Crato, N. (1998a). Heavy-Tailed
Phenomena in Combinatorial Search, 1998. (submitted for
publication)

Gomes, C.P. and Selman, B., McAloon, K., and Tretkoff C.
(1998b). Randomization in Backtrack Search: Exploiting
Heavy-Tailed Profiles for Solving Hard Scheduling Problems.
To appear in: Proc. AIPS-98.

Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G., and Re-
sende, M.G.C. (1993). An Interior Point Approach to Boolean
Vector Function Synthesis. Proc. 36th MSCAS, 185-189.

Kautz, H. and Selman, B. (1996). Pushing the envelope: plan-
ning, propositional logic, and stochastic search. Proc. AAAI-
1996, Portland, OR.

Li.ChuMin and Anbulagan (1997). Heuristics based on unit
propagation for satisfiability problems. Proc. IJCAI-97, Ky-
oto, Japan, 1997.

Luby, M., Sinclair A., and Zuckerman, D.
(1993). Optimal speedup of Las Vegas algorithms. Informa-
tion Process. Lett., 17, 1993, 173-180.

Mandelbrot, Benoit, B. (1960). The Pareto-Ldvy law and the dis-
tribution of income. International Economic Review 1,79-106.

McAloon, K., Regin, J-C, Tretkoff C. and Wetzel G. (1998).
Constraint-Based Programming for Sports League Scheduling.
Manuscript in preparation 1998.

McAloon, K.,Tretkoff C. and Wetzel G. (1997). Sports League
Scheduling. Proceedings of Third Hog International Users
Meeting, 1997.

Nemhauser, G., and Trick, M. (1997). Scheduling a major col-
lege basketball conference. Georgia Tech., Technical Report,
1997. v

Oddi A. and Smith, S. (1997) Stochastic procedures for generat-
ing feasible schedules. Proc. AAAI-97, New Providence, RI
1997.

Puget, J-F.,andLeconte, M. (1995). Beyond the Black Box:
Constraints as objects. Proceedings of ILPS'95, MIT Press,
513-527.

Samorodnitsky, Gennady and Taqqu, Murad S. (1994). Stable
Non-Gaussian Random Processes: Stochastic Models with In-
finite Variance, Chapman and Hall, New York.

Schreuder, J. A. M. (1992). Combinatorial Aspects of Construc-
tion of Competition Dutch Professional Football Leagues, Dis-
crete Applied Mathematics 35 (1992) 301-312.

Selman, B. and Kautz, H. (1993). Domain-independent exten-
sions to GSAT: solving large structured satisfiability problems.
Proc. IJCAI-93, Chambery, France, 290-295.

Smith, B. and Grant S.A. (1996). Sparse constraint graphs and
exceptionally hard problems. UCAI-95, 646-651, 1995. Full
version in AIJ (Hogg et al. 1996).

Wetzel, G. and Zabatta, F. (1998). CUNY Graduate Center CS
Technical Report, 1998.

38

Algorithm Portfolios

Carla Gomes and Bart Selman
Dept. of Computer Science

Cornell University
Ithaca, NY 14850

{ gomes, selman } @cs. Cornell. edu

Abstract

Stochastic algorithms are among the best methods for solving computationally
hard search and reasoning problems. The runtime of such procedures can vary sig-
nificantly from instance to instance and, when using different random seeds, on the
same instance. One can take advantage of such differences by combining several
algorithms into a portfolio, and running them in parallel or interleaving them on a
single processor. We provide a detailed evaluation of the portfolio approach on dis-
tributions of hard combinatorial search problems. We show under what conditions
the portfolio approach can have a dramatic computational advantage over the best
traditional methods.

1 Introduction

Randomized algorithms are among the best current algorithms for solving computationally
hard problem. Most local search methods for solving combinatorial optimization problems
have a stochastic component, both to generate an initial candidate solution, as well as to
choose among good local improvements during the search. Complete backtrack-style search
methods often also use an element of randomness in their value and variable selection in
case of ties. The runtime of such algorithms varies from run to run on the same problem
instance, and therefore can be characterized by a probability distribution. The performance
of algorithms can also vary dramatically among different problem instances. In this case,
we want to consider the performance profile of the algorithms over a spectrum of problem
instances.

Given the diversity in performance profiles among algorithms, various approaches have
been developed to optimize the overall performance of algorithms, taking into account

39

computational resource constraints. These considerations led to the development of any-
time algorithms (Dean and Boddy 1988), decision theoretic metareasoning and related
approaches (Horvitz and Zilberstein 1996; Russell and Norvig 1995).

Despite the numerous results obtained in these areas, so far they have not been ex-
ploited much by the traditional communities that study hard computational problems,
such as operations research (OR), constraint satisfaction (CSP), theorem proving, and the
experimental algorithms community. In order to bridge this gap, we study the possibil-
ity of combining algorithms into portfolios in the context of the recent results concerning
the inherent complexity of computationally hard search and reasoning problems (Gomes
and Selman 97; Huberman et al. 1997). We analyze the performance profiles of several
of the state-of-the-art search methods on a distribution of hard search problems encoded
as Constraint Satisfaction problems (CSP), and as Mixed Integer Programming problems
(MIP). Our study reveals several interesting problem classes where a portfolio approach
gives a dramatic improvement in terms of overall performance, compared to a single algo-
rithm approach. In addition, we also show that a good strategy for designing a portfolio
is to combine many short runs of the same algorithm. The effectiveness of such portfo-
lios explains the common practice of "restarts" for stochastic procedures, where the same
algorithm is run repeatedly with different initial seeds for the random number generator.

Our analysis also provides some new directions for designing good heuristic algorithmic
strategies. For example, in our MIP domain, we find that a depth-first search strategy is
preferable over the more standard best-bound strategy. On a single processor, the best-
bound strategy is more robust than a depth-first strategy. That is, both the expected
runtime and variance of best-bound approaches tend to be smaller than the corresponding
values for depth-first strategies. However, when one has several processors available, e.g.,
in a compute cluster, a collection of depth-first runs outperforms a set of best-bound runs.
The key is that depth-first is in a sense a more "audacious" strategy. It has a much larger
variance than the best-bound strategy and has a non-negligable chance of finding solutions
on very short runs. By running an ensemble of such "risky" strategy, one can outperform
the more conservative best-bound strategy. In fact, one obtains a smaller expected overall
runtime and a smaller variance when using a portfolio of depth-first runs. These insights
suggest that when multiple compute resources are available, a design aiming for high-
variance search methods, especially with a non-neglible probability of finding solutions
with short runs, may result in the best overall strategy.

Overall, our results suggest that the various ideas on flexible computation can indeed
play a significant role in algorithm design, complementing the more traditional methods
for solving computationally hard search and reasoning problems. We hope that this work
will push these ideas closer to practical applications.

40

2 Search procedures and problem domains

2.1 Randomization of Backtrack Search

We consider a general technique for adding randomization to complete, systematic, back-
track search procedures. Such procedures construct a solution incrementally. At each step
a heuristic is used to select an operation to be applied to a partial solution, such as as-
signing a value to an unassigned variable. Eventually either a complete solution is found,
or the algorithm determines that the current partial solution is inconsistent. In the latter
case, the algorithm backtracks to an earlier point in its search tree.

If several choices are heuristically determined to be equally good, then a deterministic
algorithm applies some fixed rule to pick one of the operations, for example, by selecting the
variables in lexicographic order. The most obvious place to apply randomization, therefore,
is in this tie-breaking step: if several choices are ranked equally, choose among them at
random. Even this simple modification can dramatically change the behavior of a search
algorithm, as we will see below. However, if the heuristic function is particular powerful,
it may rarely assign more than one choice the highest score. To handle this situation, we
can introduce a "heuristic equivalence" parameter to the algorithm. Setting the parameter
to a value H greater than zero means all choices that receive scores within if-percent of
the highest score are considered equally good. This expands the choice set for random
tie-breaking.

With these changes, each run of the backtrack search algorithm on a particular instance
will differ in the order in which choices are made and potentially in time to solution. We
should note that introducing randomness in the branching variable selection does not
affect the completeness of the backtrack search. Some basic bookkeeping ensures that the
procedures do not revisit any previously explored part of the search space, which means
that we can still determine inconsistencies, unlike local search methods. The bookkeeping
mechanism involves some additional information, where for each variable on the stack, we
keep track of which assignments have been tried so far.

We randomized the Hog constraint solver engine for our experiments on constraint
satisfaction formulations. Hog provides a powerful C++ constraint programming library
(Puget and Leconte 1995). We randomized the first-fail heuristic and various variants of
the Brelaz selection rule, which has been shown to be effective on graph coloring style
problem domains (Brelaz 1979).

2.2 Randomization of Branch-and-Bound

The standard approach used by the OR community to solve mixed integer programming
problems (MIP) is branch-and-bound search. First, a linear program (LP) relaxation of the
problem instance is considered. In such a relaxation, all variables of the problem are treated
as continuous variables. If the solution to the LP relaxation problem has non-integer values

for some of the integer variables, we have to branch on one of those variables. This way we
create two new subproblems (nodes of the search tree), one with the floor of the fractional
value and one with the ceiling. (For the case of binary (0/1) variables, we create an instance
with the variable set to 0 and another with the variable set to 1.) The standard heuristic
for deciding which variable to branch on is based on the degree of infeasibility of variables
("max infeasibility variable selection"). That is, we select the variable whose non-integer
part in the solution of the LP relaxation is closest to 0.5. Informally, we pick the variable
whose value is "least integer".

Following the strategy of repeatedly fixing integer variables to integer values will lead
at some point to a subproblem with an overall integer solution (provided we are dealing
with a feasible problem instance). (Note we call any solution where all the integer variables
have integer values an "integer solution".) In practice, it often happens that the solution
of the LP relaxation of a subproblem already is an integer solution, in which case we do
not have to branch further from this node.

Once we have found an integer solution, its objective function value can be used to
prune other nodes in the tree, whose relaxations have worse values. This is because the LP
relaxation bounds the optimal solution of the problem. For example, for a minimization
problem, the LP relaxation of a node provides a lower-bound on the best possible integer
solution.

A critical issue that determines the performance of branch-and-bound is the way in
which the next node to expand is selected. The standard approach, in OR, is to use a best-
bound selection strategy. That is, from the list of nodes (subproblems) to be considered,
we select the one with the best LP bound. (This approach is analogous to an A* style
search. The LP relaxation provides an admissible search heuristic.)

The best-bound node selection strategy is particularly well-suited for reaching an op-
timal solution (because of the greedy guidance), which has been the traditional focus of
much of the research in OR. One significant drawback of this approach is that it may take
a long time before the procedure finds an integer solution, because of the breadth first
flavor of the search. Also, the approach has serious memory requirements because the full
fringe of the tree has to be stored.

Given problems that have a difficult feasibility part, the best-bound approach may
take too long before reaching an integer solution. (Note that an integer solution is required
before any nodes can be pruned.) In our experiments, we therefore also considered a depth-
first node selection strategy. Such a strategy often quickly reaches an integer solution, but
may take longer to produce an overall optimal value.

In our experiments, we used a state-of-the-art MIP programming package, called CPLEX.
CPLEX provides a set of libraries that allows one to customize the branch-and-bound
search strategy. For example, one can vary node selection, variable selection, variable set-
ting strategies, the LP solver, etc. We used the default settings for the LP solver, which
is for the first node primal-simplex and for subsequent nodes dual-simplex. We modified

42

the search strategies to include some level of randomization. We randomized the variable
selection strategy by introducing noise in the ranking of the variables, based on maximum
infeasibility. Note that the completeness of the search method is maintained. We have
experimented with several other randomization strategies. For example, in CPLEX one
can assign an apriori variable ranking, which is fixed throughout branch-and-bound. We
experimented by randomizing this apriori ranking. We found, however, that the dynamic
randomized variable selection strategy, as described above, is more effective.

2.3 Problem Domains

In order to study the performance profile of different search strategies, we derive generic
distributions of hard combinatorial search problems from the domain of finite algebra. In
particular, we consider the quasigroup domain. A quasigroup is an ordered pair (Q,-),
where Q is a set and (•) is a binary operation on Q such that the equations a ■ x = b
and y ■ a = b are uniquely solvable for every pair of elements a, b in Q. The order N of
the quasigroup is the cardinality of the set Q. The best way to understand the structure
of a quasigroup is to consider its N by N multiplication table as defined by its binary
operation. The constraints on a quasigroup are such that its multiplication table defines
a Latin square. This means that in each row of the table, each element of the set Q
occurs exactly once; similarly, in each column, each element occurs exactly once (Denes
and Keedwell 1974).

An incomplete or partial latin square P is a partially filled N by N table such that
no symbol occurs twice in a row or a column. The Quasigroup Completion Problem is
the problem of determining whether the remaining entries of the table can be filled in
such a way that we obtain a complete latin square, that is, a full multiplication table of
a quasigroup. We view the pre-assigned values of the latin square as a perturbation to
the original problem of finding an arbitrary latin square. Another way to look at these
pre-assigned values is as a set of additional problem constraints to the basic structure of
the quasigroup.

There is a natural formulation of the problem as a Constraint Satisfaction Problem.
We have a variable for each of the N2 entries in the multiplication table of the quasigroup,
and we use constraints to capture the requirement of having no repeated values in any
row or column. All variables have the same domain, namely the set of elements Q of the
quasigroup. Pre-assigned values are captured by fixing the value of some of the variables.

Colbourn (1983) showed the quasigroup completion problem to be NP-complete. In
previous work, we identified a clear phase transition phenomenon for the quasigroup com-
pletion problem (Gomes and Selman 1Ö97). See Figure 1. From the figures, we observe
that the costs peak roughly around the same ratio (approximately 42% pre-assignment)
for different values of N. (Each data point is generated using 1,000 problem instances.
The pre-assigned values were randomly generated.) This phase transition with the corre-

43

sponding cost profile allows us to tune the difficulty of our problem class by varying the
percentage of pre-assigned values.

An interesting application area of latin squares is the design of statistical experiments.
The purpose of latin squares is to eliminate the effect of certain systematic dependency
among the data (Denes and Keedwell 1974). Another interesting application is in schedul-
ing and timetabling. For example, latin squares are useful in determining intricate sched-
ules involving pairwise meetings among the members of a group (Anderson 1985). The
natural perturbation of this problem is the problem of completing a schedule given a set
of pre-assigned meetings.

The quasigroup domain has also been extensively used in the area of automated theorem
proving. In this community, the main interest in this domain has been driven by questions
regarding the existence and nonexistence of quasigroups with additional mathematical
properties (Fujita et al. 1993; Lam et al. 1989).

■ I -I

"' ' "."'.

' f '■

--y y\ ■

•^ k^- > . 1—, . i_i
3.1 3.;

I 1 r—pKP*^ ■■ **—»■■!■■■■'

f " ./

I
1 J

....«^^C*4^ ■ ■ i • i .

frictisr. a(prwiiigr,«! (

(a) (b)

Figure 1: (a) Cost profile, and (b) phase transition for the quasigroup completion problem
(up to order 15).

In our experiments we were also interested in problems that combine a hard combi-
natorial component with numerical information. Integrating numerical information into
standard AI formalism is becoming of increasing importance. For example, in planning,
one would like to incorporate resource constraints or a measure of overall plan quality.
We considered examples based on logistics planning problems, formulated as mixed integer
programming problems. These formulations extend the traditional AI planning approach
by combining the hard constraints of the planning operators, initial state, and goal state,
with a series of soft contraints capturing resource utilization. For example, one can require
that trucks are loaded as close as possible to their maximum capacity. Such formulations
have been shown to be very promising for modeling AI planning problems (Kautz and

44

Walser 1999; Vossen et al. 1999). Experimentation with the CPLEX MIP solver showed
that these problem instances are characterized by a non-trivial feasibility component.1

3 Computational Cost Profiles

 1

fs

y'
a'

--'*1 '""*

a
--"*"brelais *—

btelazr •♦—
cbrelazs D ■
rbrelair -«■-

/ ■-*'
/ a ■

/ /

// /

' /// /

a
"

/ / f

///
"

r''
■ , ,

nuMb«r of backtracks (or tirst solution

Figure 2: Cost profiles for the quasigroup completion problem for a range of search heuris-
tics.

We start by considering the computational cost of solving the quasigroup completion
problem for different search strategies. As our basic search procedure, we use a complete
backtrack-style search method. The performance of such procedures can vary dramatically
depending on the way one selects the next variable to branch on (the "variable selection
strategy") and in what order the possible values are assigned to a variable (the "value
selection strategy"). There is a large body of work in both the CSP and OR communities
exploring different search strategies.

One of the most effective strategies is the so-called First-Fail heuristic.2 In the First-Fail
heuristic, the next variable to branch on is the one with the smallest remaining domain (i.e.,
in choosing a value for the variable during the backtrack search, the search procedure has
the fewest possible options left to explore — leading to the smallest branching factor). We
consider a popular extension of the First-Fail heuristic, called the Brelaz heuristics (Brelaz
1979). The Brelaz heuristic was originally introduced for graph coloring procedures. It

1We thank Henry Kautz and Joachim Walser for providing us with MIP formulations of the logistic
planning problems.

2It's really a prerequisit for any reasonable bactrack-style search method. In theorem proving and
Boolean satisfiability, the rule corresponds to the powerful unit-propagation heuristic.

45

provides one of the most powerful graph-coloring and general CSP heuristics (Trick and
Johnson 1996).

The Brelaz heuristic specifies a way for breaking ties in the First-fail rule: If two
variables have equally small remaining domains, the Brelaz heuristic proposes to select
the variable that shares constraints with the largest number of the remaining unassigned
variables. A natural variation on this tie-breaking rule is what we call the "reverse Brelaz"
heuristic, in which preference is given to the variable that shares constraints with the
smallest number of unassigned variables. Any remaining ties after the (reverse) Brelaz rule
are resolved randomly. One final issue left to specify in our search procedure is the order
in which the values are assigned to a variable. In the standard Brelaz, value assignment
is done in lexicographical order (i.e., systematic). In our experiments, we consider four
stragies:

• Brelaz-S — Brelaz with systematic value selection,

• Brelaz-R — Brelaz with random value selection,

• R-Brelaz-S — Reverse Brelaz with systematic value selection, and

• R-Brelaz-R — Reverse Brelaz with random value selection.

Figure 2 shows the performance profile of our four strategies on an instance of the
quasigroup completion problem (order 20, 10% preassigned). Each curve gives the cumu-
lative distribution obtained for each strategy by solving the problem 10,000 times. The
cost (horizontal axis) is measured in number of backtracks, which is directly proportional
to the total runtime of our strategies. For example, the figure shows that R-Brelaz-R,
finished roughly 80% of the 10,000 runs in 15 backtracks or less. The left panel of the
figure shows the overall profile; the right panel gives the initial part of the profile.

Note that that R-Brelaz-R dominates R-Brelaz-S over the full profile. In other words,
the cumulative relative frequency curve for R-Brelaz-R lies above that of R-Brelaz-S at
every point along the x-axis. Brelaz-S, in turn, strictly dominates Brelaz-R.

From the perspective of combining algorithms, what is most interesting, however, is
that in the initial part of the profile (see right panel of Figure 2), Brelaz-S dominates
R-Brelaz-R. Intuitively, Brelaz-S is better than R-Brelaz-R at finding solutions quickly.
However, in the latter part of the cumulative distribution, R-Brelaz-R dominates Brelaz-S.
In a sense, R-Brelaz-R gets relatively better when the search gets harder. As we will see
in the next section, we can exploit this in our algorithm portfolio design.

In Figure 3, we compare the runtime profile of a depth-first strategy with a best-
bound strategy to solve a hard feasibility problem in the logistics domain, formulated as a
mixed integer programming problem. The search is terminated when an optimal or near-
optimal (<10% from optimal) solution is found, but without the requirement of proving

46

E
o

0.9

0.8

0.7

0.6

#*'-#"

y'

 1

-Befit Bound -+-■

1000 1500 2000
Number of nodes

2500 3000 3500

Figure 3: Cost profiles for a logistics planning problems for depth-first and best-bound
search strategies.

optimality.3 The figure shows the cumulative distribution of solution time (in number
of expanded nodes). For example, with 500 or less nodes, the depth-first search finds a
solution on approximately 50% of the runs. Each run had a time limit of 5000 seconds. As
we see from the figure, the depth-first search initially outperforms the best-bound search.
However, after more than 1500 node expansions, the best-bound becomes more effective.
For example, best-bound finds a solution on approximately 75% of the runs with 2000
node expansions or less. In contrast, depth-first search can only find solutions on 55%
of the runs with the same number of node expansions. This data is consistent with the
observation above that best-bound may take some time to find an intial integer solution.
However, once such an initial integer solution is found, best-bound becomes more effective.

We now consider the runtime distributions more closely. Figure 4 gives a log-log plot of
the complement of the cumulative distribution for the depth-first procedure. For example,
from this plot, we see that after 10,000 nodes, approximately 30% of the runs have not yet
found the solution. The figure shows a near linear behavior over several orders of mag-
nitude. This is an indication of so-called heavy-tailed behavior which often characterizes

3One should be careful to distinguish between finding an optimal integer solution and proving that this
is indeed the optimal solution. Our interest lies in problems where the proof of optimality can be beyond
reach of any procedure; however, we can often still find good quality solution.

47

0.1 L

 TV ^-'- ^%X' 1

\

k

üeotn i-irsi •■»

\

X
X

 i

10 100 1000
Number of nodes (log scale)

10000

Figure 4: Heavy-tailed behavior of depth-first search.

complete search methods (Gomes et al. 1997). In a sense, the time till solution behaves in
a very erratic manner: very long runs occur much more frequently than one might expect.
Best-bound also appears to exhibit heavy-tailed behavior, but less dramaticly than that
for depth-first search.

This erratic search behavior is related to the feasibility part of the search. Even though
the main focus of our study was the study of the runtime distributions for feasibility, pre-
liminary results on the characterization of the runtime distributions for proving optimality
indicate that such distributions do not appear to be heavy-tailed. We conjecture that
indeed proving optimality does not produce heavy-tails since the entire search space has
to be explored. This is consistent with the results by Frost et al. (1997) on constraint
satisfaction problems. They show that standard (not heavy-tailed) distributions, such as
the Weibull and log-normal distribution, underly the cost of proving inconsistency. Further
experimentation is required.

In the next section we show how the large variance in search methods, as characterized
by heavy-tailed behavior, can be exploited by combining algorithms into portfolios or
running multiple copies of the same algorithm.

48

4 Portfolio Design

A portfolio of algorithms is a collection of different algorithms and/or different copies of the
same algorithm running on different processors (Gomes and Selman 97; Huberman et al.
1997). Here we consider the case of independent runs without interprocess communication.4

We are considering Las Vegas type algorithms, i.e., stochastic algorithms that always
return a model satisfying the constraints of the search problem or demonstrate that no
such model exists (Motwani and Raghavan 1995). The computational cost of the portfolio
is therefore a random variable. The expected computational cost of the portfolio is simply
the expected value of the random variable associated with the portfolio and its standard
deviation is a measure of the "dispersion" of the computational cost obtained when using
the portfolio of algorithms. In this sense, the standard deviation is a measure of the risk
inherent to the portfolio.

The main motivation to combine different algorithms into a portfolio is to improve on
the performance of the component algorithms, mainly in terms of expected computational
cost but also in terms of the overall risk. As we will show, some portfolios are strictly
preferrable to others, in the sense that they provide a lower risk and also a lower expected
computational cost. However, in some cases, we cannot identify any portfolio within a
set that is the best, both in terms of expected value and risk. This set of portfolios
corresponds to the efficient set or efficient frontier, following terminology used in the
theory of mathematical finance. Within this set, in order to minimize the risk, one has to
deteriorate the expected value or, in order to improve the expected value of the portfolio,
one has to increase the risk.

In this context, where we characterize a portfolio in terms of its mean and variance,
combining different algorithms into a portfolio only makes sense if they exhibit different
probability profiles and none of them dominates the others over the whole spectrum of
problem instances. An algorithm A dominates algorithm B if the cumulative frequency
distribution of algorithm A lies above the cumulative frequency distribution of algorithm
B for all points.5

Let us consider a set of two algorithms, algorithm 1 and algorithm 2. Let us associate
a random variable with each algorithm: Al — the number of backtracks that algorithm 1
takes to find the first solution or to prove that a solution does not exist; A2 — the number
of backtracks that algorithm 2 takes to find the first solution or to prove that a solution
does not exist.

Let us assume that we have N processors and that we design a portfolio using nl
processors with algorithm 1 and n2 processors with algorithm 2. So, N = nl + n2. Let us
define the random variable associated with this portfolio: X — the number of backtracks

4One can also consider the somewhat more general case of interleaving the execution of algorithms on
one or more processors.

5Another criterion for combining algorithms into a portfolio is given by the algorithm covariance.

49

that the portfolio takes to find the first solution or to prove that a solution does not exist.
The probability distribution of A" is a "weighted" probability distribution of the prob-

ability distributions of algorithm 1 and algorithm 2. More precisely, the probability that
X = x is given by the probability that one processor takes exactly x backtracks and all
the other ones take x or more backtracks to find a solution or to prove that a solution does
not exist.

Let us assume that we have N processors and our portfolio consists of N copies of
algorithm 1. In this case, P[X=x] is given by the probability that one processor take
exactly x backtracks and the other TV -1 take more than x backtracks, plus the probability
that two processors take exactly x backtracks and the other (N-2) one takes more than x
backtracks, etc., plus the probability that all the processors take exactly x backtracks to
find a solution or to prove that a solution does not exist. The following expression gives
the probability function for such a portfolio.

Given N processors, and let nl = N and n2 = 0. P[X=x] is given by

£ (^) P\Al = x]*P[Al > z]<"-*>

To consider two algorithms, we have to generalize the above expression, considering
that X = x can occur just within the processors that use algorithm 1, or just within the
processors that use algorithm 2 or within both. As a result, the probability function for a
portfolio with two algorithms, is given by the following expression:

Given JV processors, nl such that 0 <= nl <= N, and n2 = N - nl,'P[X=x] is given
by

EZ(n}) P[A1 = xfP[Al > *]<»i-«'>x
i=li'=0 \ l

P[A2 = xfP[A2 > x]<n2-*")]

The value of i" is given by i" = i - i\ and the term in the summation is 0 whenever
i" < 0 or i" > nl.

In the case of a portfolio involving two algorithms the probability distribution of the
portfolio is a summation of a product of two expressions, each one corresponding to one
algorithm. In the case of a portfolio comprising M different algorithms, this probability
function can be easily generalized, by having a summation of a product of M expressions,
each corresponding to an algorithm.

Once we derive the probability distribution for the random variable associated with the
portfolio, the calculation of the its expected value and standard deviation is straightforward.

50

5 Empirical Results for Portfolio Design

5.1 Constraint Satisfaction

liOO

Fort folio fat 1 pro»» on
■ i

1 broUit. 0 rttrtli

LIOO /

1201 /

1000

»oo

SCO

<c;

i:s j,*'- br»l«i, 1 rtortlm

: ori^**f^*I rbr*!«r

Portfolio for 5 proeonori

(a)

Portfolio tor 10 procanon

T 0 brtlm, ID rbrilur •

■

V} brilir». 1 rbrtlizi

iO br«U:i, rbreli

—i 1 1

S brtlm., l rbrt

■ •

■ ■

0 örtUii. 5 rbrtUir/
,

; bt«)»it. 3 rbrtlur

(b)

;.*s
pen folio (or 13 prcc* lor*

9.1

: br«.a t. 20 tfr.l

0.1S

0.]

■

0.1S

j.i

20 bi rtfizi. 0 rbrolm ' ' '

■

(c) (d)

Figure 5: Portfolio combining Brelaz and R-Brelaz-R for solving a quasigroup completion
instance using two (a), five (b), ten (c), and twenty processors (d).

We now derive different portfolios based on the runtime profiles given in Figure 2
(Section 3). Note that this is an interesting case from the portfolio design perspective
because Brelaz-S dominates in the initial part of the distribution, whereas R-Brelaz-R
dominates in the latter part.

Figure 5 gives the expected runtime values and the standard deviations of portfolios
for 2, 5, 10, and 20 processors. (Results derived using the formula given above.) We see
that for 2 processors (Figure 5(a)), the portfolio consisting of two copies of R-Brelaz-R has

51

the lowest expected runtime and the lowest standard deviation. This portfolio dominates
the two other 2-processox portfolios.

When we increase the number of processors, we observe an interesting shift in the
optimal portfolio mix. For example, for 5 processors, using 2 copies of Brelaz-S gives a
better expected value at only a slight increase in the risk (standard deviation), compared
to zero Brelaz-S. In the case of five processors, the efficient set comprises four portfolios:
one with 5 R-Brelaz-R, one with 1 Brelaz-S and 4 R-Brelaz-R, one with 2 Brelaz-S and
3 R-Brelaz-R, and one with 3 Brelaz-S and 2 R-Brelaz-R. There is no clear dominant
portfolio among those three. In this set, one has to trade a decrease in expected runtime
for an increase in variance: in order to minimize the expected runtime, the best portfolio
is 3 Brelaz-S and 2 R-Brelaz-R; in order to minimize the risk (variance) the best portfolio
corresponds to 5 R-Brelaz-R.

The situation changes even more dramatically if we increase the number of processors.
In particular, with 20 processors (Figure 5d), the best portfolio corresponds to using copies
of the Brelaz-S strategy on all processors, obtaining the lowest expected value and the
lowest standard deviation. The intuitive explanation for this is that by running many
copies of Brelaz-S, we have a good chance that at least one of them will find a solution
quickly This result is consistent with the common use of "random restarts" in stochastic
search methods in practical applications. Our portfolio analysis also gives the somewhat
counter-intuitive result that, even when given two stochastic algorithms, where neither
strictly dominates the other, running multiple copies of a single algorithm is preferrable to
a mix of algorithms.

5.2 Mixed Integer Programming

In section 3 we have shown that there are several interesting trade-offs between depth-
first branch-and-bound versus best-bound branch-and-bound. In particular, depth-first
search performs better early on in the search, whereas best-bound is better on longer runs.
Again, as with constraint satisfaction methods in the quasigroup domain, we will show how
a portfolio approach can be used to effectively combine the best features of each search
strategy.

In figure 6, we consider a range of portfolios for solving our feasibility problem for the
logistics domain, considering situations from one processor to twenty processors (the same
instance as the one considered in figure 3). The plot gives the expected runtime and stan-
dard deviation for different ways of combining a branch-and-bound search procedure using
depth-first search and best-bound search. From this plot we see that the best choice, when
using a single processor, in terms of minimizing expected runtime and standard devia-
tion, corresponds to running branch-and-bound with best-bound. Best-bound remains the
best strategy when we consider two processors, i.e., the best portfolio consists of running
branch-and-bound with best-bound on both processors. The expected runtime of such a

52

100000 ■ ■ ■ i . .. I ■•—'■■'-' ' ■ '1

Portfolios with 2 processors -•— •
Portfolios with 5 processors -o--

Portfolios with 10 processors N

1DP

10000 ~

,,^2DP

1BB- '' ,,.-'''

1000 2BB..---''
4- —+"'

-

100
20BB

10BB
/

jjflBBgDP

g5BB

% •
2BB3DP

 C5DP

20DP
10DP

■

... i

10 100 1000 10000
Standard Deviation of Run Time (log)

100000

Figure 6: A range of portfolios for the MIP formulation of logistics planning (expected run
time).

strategy is approximately 700 nodes with a standard deviation of around 750. Contrast
these values, for example, with the much higher values corresponding to the strategy of
running branch-and-bound with depth-first on both processors (average 4397 and standard
deviation of 14112).

The mixing strategy changes as we increase the number of processors or the amount of
interleaving. For example, for the case of ten processors, the best strategies are 9DF/1BB
and 10DF/0BB. (We use the notation xDF/yBB to mean running x depth-first processes
and y best-bound processes.) These strategies give both a low expected runtime and a low
standard deviation. There is no clear dominant strategy among those two (efficient set).
In this set, one has to trade a decrease iri expected runtime for an increase in variance:
in order to minimize the expected runtime, the best portfolio is 10DF/0BB; in order to
minimize the risk (variance) the best portfolio corresponds to 9DF/1BB. It is interesting
to observe that, in the case of 20 processors, the best strategy corresponds to only using
depth-first search (i.e., 20DF/0BB).

Figure 7 shows the total computational cost for the different portfolios. In other words,
rather than just considering the time for solution as in figure 6, figure 7 factors in the
number of processors.

Figure 8, panel (a), shows that the reduction in expected runtime decreases at a very

53

100000

•= 10000 -

o
o

1000

100

'
l- i i ..,

POitloÜOS wüh
Portfolios with 2
Portfolios with 5

Portfolios with 10

processors
processors
processors

_H .
-D ■ ■

■V ■

1DP

:
,,+2DP :

/ .
20BB .-■'

10BB
x. 5BB

: J / 2BB3DlPn...
20DP X

1BB9DP*10DP

2BB,.
1BB

SDP :

■ .
■ ■

■ •

i i i

'

10 100 1000 10000
Standard Deviation of Run Time (log)

100000

Figure 7: A range of portfolios for the MIP formulation of logistics planning (expected
total cost).

slow rate, for more than 10 processors. In fact, figure 8, panel (b), shows that, the most
cost-effective solution6 is obtained for a 10 processor portfolio.

6 Restart Strategies

A key intuition behind the effectiveness of the portfolio approach is that it takes advan-
tage of relatively short runs. Having more processors available increases the probability
of encountering a relatively short run. One can simulate a multi-processor approach by
running several copies of the search methods interleaved on a single processor. A related
strategy is to use a restart strategy, where one periodically restarts the randomized search
with a new random seed. As discussed in section 3, backtrack search cost profiles are of-
ten heavy-tailed, with runtimes varying over several orders of magnitude on different runs
of the same instance. Restart strategies reduce the extreme variance that is inherent in
backtrack search procedures. In this section we formalize the restart strategy of a com-
plete randomized backtrack search and we present results for the restart strategy applied
to depth-first and best-bound. For related work on restarts, see e.g., Aldous and Vazirani
1994; Alt et al. 1996; Ertel 1991; Luby et al. 1993; and Selman and Kirkpatrick 1996.)

6We consider the total cost, i.e, the time to find a solution times the number of processors

54

10 12
Number of Processors

(a) (b)
Number of Processors

Figure 8: Expected time (a) and expected total cost (b) of optimal portfolio for different
numbers of processors.

6.1 A Formal Characterization of Restarts

Given a randomized backtrack search procedure, let us consider the number of choice points
(or backtracks) performed by such a procedure. We introduce random variable B, such
that,

B is the number of choice points that the backtrack search procedure takes to
find a solution or prove that it does not exist. i? = {1,2, • • •}

Now consider a Rapid Randomized Restarts (RRR) strategy for running our backtrack
procedure: run the procedure up to a fixed number of choice points c (the cutoff); if the
procedure finds a solution or proves that no solution exists, then RRR has also found
a solution (or proven that no solution exists) and stops; otherwise restart the backtrack
procedure from the beginning (using an independent random seed) for another c decision
events, and so on. We associate with RRR the random variable S, such that,

S is the number of choice points that RRR takes to find a solution or prove
that no solution exists. S = {1,2, • • •}

Let's define a "run", as the execution of the randomized backtrack search method for
up to c steps. We now define the random variable R, such that,

R is the number of runs executed by RRR.

55

I 2

I 2

2 ..

I 2 ... c ... 2c ... 2c+m

Figure 9: B — number of choice points searched by the randomized backtrack procedure
(running with cutoff c); S — number of choice points searched by RRR; R — number of
runs executed by RRR. In this case, a solution was found in the third run (R = 3), with
a total of 2c + m choice points (S = 2c + m). The third run of the randomized backtrack
search method took m < c choice points.

Figure 9 illustrates how the different random variables relate to each other. The runs
executed by RRR are independent (no information is carried over between runs, and each
run uses a new random seed) and therefore can be seen as a sequence of Bernoulli trials, in
which the success of a trial corresponds to finding a solution (or proving that one does not
exist) during a run; its probability is given by P[B< c). Therefore, R follows a geometric
distribution with parameter p = P[B < c]. The probability of the tail of S, P[S > s],
corresponds to the probability of not finding the solution in the first [s/cj runs of RRR,
and finding it with more than (s mod c) choice points in the next run. We obtain the
following expression:

P[S >s} = P[B > c]Ls/cJ P[B > s mod c] (1)

We note that the distribution of S is not heavy-tailed since its tail exhibits exponential
decay:

P[S >s}< P[B > cp/cJ = P[R > [s/c\] (2)

56

In words, the tail of S is limited from above by the tail of R. Since R follows a geometric
distribution, it has finite moments, and therefore so does S.7

The full distribution of S is given by the following expression:

' P[B > cp/cJ P[B = s mod c] s mod c / 0
P[S = s] = | (4)

(P[B > c]l*/cJ-1 P[s = c] otherwise

Note that the second branch of (4) corresponds to the case in which the total number
of choice points executed by strategy S is a multiple of c. This situation occurs when the
solution is found when the cutoff c is reached.

Based on the distribution of B, we can determine a cutoff, c, that minimizes the ex-
pected runtime of S. In our experiments, we determined the cutoff for the restart strategy
(RRR) based on the empirical distribution of B, which was computed by performing 10,000
runs of the search methods, on the same instance, with a very high cutoff.

6.2 Empirical Results for Restart Strategies

In Figure 10, we show the result of applying a strategy of fixed-length short runs ("restarts")
of a randomized backtrack procedure. Figure 10(a) shows the results on a quasigroup com-
pletion instance. Without restarts and given a total of 300 backtracks, we have a failure
rate of around 70%. Using restarts (every 4 backtracks), this failure rate drops to around
0.01%. The figure also shows a clear downward curve for the log-log plot of the complement-
to-one of the cumulative distribution of the restart strategy, which is an indication that
the heavy-tailed nature of the original cost distribution has disappeared.

Figure 11 shows the effect of different cutoff values in terms of the restart strategy
on the logistics planning problem. The left panel corresponds to depth-first search, while
the right panel corresponds to best-bound. Even though both panels reveal the existence
of optimal cutoff values, one can observe that choosing the optimal cutoff is much more
crucial for the depth-first search strategy than for the best-bound strategy. Such dramatic
speed up obtained when using the optimal cutoff value with depth-first search is due to

7Heavy-tailed distributions are characterized by tails that have a power-law (polynomial) decay, i.e.,
distributions which asymptotically have "heavy tails" — also called tails of the Pareto-Levy form, viz.

P[X > x] ~ Cx'a, x > 0 (3)

where 0 < a < 2 and C > 0 are constants. Some of the moments of heavy-tailed distributions are infinite
(e.g., some heavy-tailed distributions have infinite mean and infinite variance, others just infinite variance,
etc).

57

3 0.01
I

0.001 •

"* » * + *i-i
effect of restarts (cutoff 4)

10 100
total number of backtracks

Figure 10: A rapid restart strategy to speed up backtrack search. Failure rate (1 - F(x))
as a function of the total number of backtracks for a quasigroup instance.

10OO
Cutoff vakn (nodM) (log)

(a) (b)

1000
Cutoff value (nodes) (tog)

Figure 11: Expected cost as a function of restart cutoff for (a) depth-first and (b) branch-
and-bound.

the strong heavy-tailed nature that characterizes depth-first search. In fact, that is also
the reason why, as we increase the number of processors, it is worth running depth-first
search on more processors. Intuitively, the chance of a short run with depth-first increases
considerably.

58

7 Conclusions

We have provided results showing the computational advantage of a portfolio approach for
dealing with hard combinatorial search and reasoning problems. Our results considered two
predominant representation paradigms for combinatorial problems: Constraint Satisfaction
formulations and Mixed Integer Programming formulations. Our analysis shows that one
can exploit the large variance in certain randomized search methods by running them
in a portfolio strategy and obtaining a superior overall performance, compared to more
conservative algorithmic strategies. The portfolio approach appears particularly well-suited
for the rapidly emerging compute-cluster paradigm. As our experiments show, the portfolio
approach suggests new randomized search strategies. In particular, there is an advantage
in optimizing the chance of finding a solution early on in a run, even though, on a single
processor, this may lead to a larger overall expected runtime than that of other more
traditional search techniques. Finally, if only a single processor is available, random restarts
of a stochastic method is often the optimal strategy. These results suggest that ideas
developed in the flexible computation community can play a significant role in practical
algorithm design.

References
Aldous, D. and Vazirani, U. (1994). Proc. of the 35th Symp. on the Found, of Comp. Sei., IEEE

Press (1994) 492-501.

Alt, H., Guibas, L., Mehlhorn, K., Karp, R., and Wigderson A. (1996) A method for obtaining
randomized algorithms with small tail probabilities. Algorithmica, 16, 1996, 543-547.

Anderson, L. (1985). Completing Partial Latin Squares. Mathematisk Fysiske Meddelelser, 41,
1985, 23-69.

Bixby, R.E. , Ceria, CM., McZeal, CM., Savelsbergh, M.W.P. (1996) An updated mixed integer
programming library: MIPLIB 3.0. SIAM News, 1996.

Brelaz, D. (1979). New methods to color the verices of a graph. Comm. of the ACM (1979)
251-256.

Cheeseman, Peter and Kanefsky, Bob and Taylor, William M. (1991). Where the Really Hard
Problems Are. Proceedings IJCAI-91, 1991, 163-169.

Colbourn, C. (1983). Embedding Partial Steiner Triple Systems is NP-Complete. J. Combin.
Theory (A) 35 (1983), 100-105.

Dean, T. and Boddy, M. (1988) An analysis of time-dependent planning. Proc. AAAI-88, St.
Paul, MI (1988) 49-54.

Dechter, R. (1991) Constraint networks. Encyclopedia of Artificial Intelligence John Wiley, New
York (1991) 276-285.

59

Denes, J. and Keedwell, A. (1974) Latin Squares and their Applications. Akademiai Kiado, Bu-
dapest, and English Universities Press, London, 1974.

Ertel, W. (1991) Performance analysis of competitive or-parallel theorem proving. University of
München, Techn. report FKI-162-91, 1992.

Freuder, E. and Mackworth, A. (Eds.). Constraint-based reasoning. MIT Press, Cambridge, MA.
USA, 1994.

Frost, D. . Push, I., and Vila. L. (1997) Summarizing CSP hardness with continuous probability
distributions. Proc. AAAI-97. New Providence. RI, 1997, 327-333.

Fujita, M., Slaney, J., and Bennett. F. (1993). Automatic Generation of Some Results in Finite
Algebra Proc. IJCAI, 1993.

Gent, I. and Walsh, T. (1996) The Satisfiability Constraint Gap. Artificial Intelligence, 81, 1996.

Gomes, C.P. and Selman, B. (1997) Problem structure in the presence of perturbations. Proc
AAAI-97, New Providence, RI, 1997, 221-226.

Gomes, C.P. and Selman, B. (1997) Algorithm Portfolio Design: Theory vs. Practice. In Proc.
UAI-97, New Providence, RI, 1997.

Gomes, C.P, Selman, B., Crato, N. (1997) Heavy-Tailed Distributions for Combinatorial Search.
Proc. Constraint Programming, Linz, Austria, Nov. 1997.

Horvitz, E. and Klein, A. (1995) Reasoning, metareasoning, and mathematical truth: studies of
theorem proving under limited resources. Proc. of the Eleventh Conference on Uncertainty
in Artificial Intelligence (UAI-95). August 1995.

Horvitz, E. and Zilberstein S. (1996) (Eds.) Proceedings of Flexible Computation, AAAI Fall
Symposium, Cambridge. MA. 1996.

HubermanjjB.A., Lukose, R.M., and Hogg, T. (1997). An economics approach to hard compu-
tational problems. Science, 265, 51-54.

Hogg, T., Huberman, B.A., and Williams, C.P. (Eds.) (1996). Phase Transitions and Complex-
ity. Artificial Intelligence, 81 (Spec. Issue; 1996)

Kirkpatrick, S. and Selman, B. (1994) Critical Behavior in the Satisfiability of Random Boolean
Expressions. Science, 264 (May 1994) 1297-1301.

Lam, C, Thiel, L., and Swiercz, S. (1989) Can. J. Math., Vol. XLI, 6, 1989, 1117-1123.

Luby, M., Sinclair A., and Zuckerman, D. (1993). Optimal speedup of Las Vegas algorithms.
Information Process. Lett., 17, 1993, 173-180.

Mitchell, D., Selman, B., and Levesque. H.J. (1989) Hard and easy distributions of SAT problems.
Proc. AAAI-92. San Jose. CA (1992) 459-465.

Motwani, R. and Raghavan. P. (1995) Randomized algorithms. Cambridge University Press:
Cambridge, England, 1995.

60

Puget, J-F., and Leconte, M. (1995). Beyond the Black Box: Constraints as objects. Proceedings
ofILPS'95, MIT Press, 513-527.

Russell, S and Norvig P. (1995) Artificial Intelligence a Modern Approach. Prentice Hall, Engle-
wood Cliffs, NJ. (1995).

Selman, B. and Kirkpatrick, S. (1996) Finite-Size Scaling of the Computational Cost of System-
atic Search. Artificial Intelligence. Vol. 81, 1996, 273-295.

Smith, B. and Dyer, M. Locating the- Phase Transition in Binary Constraint Satisfaction Prob-
lems. Artificial Intelligence. 81. 1996.

Trick, M. and Johnson, D. (Eds.) (1996) Proc. DIM ACS Challenge on Satisfiability Testing,
Graph Coloring, and Cliques. DIMACS Series on Discr. Math., Am. Math. Soc. Press
(1996).

Williams, C.P. and Hogg, T. (1992) Using deep structure to locate hard problems. Proc. AAAI-
. 92, San Jose, CA, July 1992. 472-277.

Zhang, W. and Korf, R. A Study of Complexity Transitions on the Asymmetric Travelling Sales-
man Problem. Artificial Intelligence, 81, 1996.

*U.S. GOVERNMENT PRINTING OFFICE: 2O01-61O-055-

